Tailoring the cell organelles and thus changing cell homeostatic behavior has permitted the discovery of fascinating metabolic features enabling enhanced viability, differentiation, or quenching inflammation. Recently, photobiomodulation (PBM) has been accredited as an effective cell manipulation technique with promising therapeutic potential. In this prospective, in vitro results revealed that 808-nm laser light emitted by a hand-piece with a flat-top profile at an irradiation set up of 60 J/cm2 (1 W, 1 W/cm2; 60 s, continuous wave) regulates bone marrow stromal cell (BMSC) differentiation toward osteogenesis. Considering the importance of actin cytoskeleton reorganization, which controls a range of cell metabolic activities, comprising shape change, proliferation and differentiation, the aim of the current work is to assess whether PBM therapy, using a flat-top hand-piece at higher-fluence irradiation on BMSCs, is able to switch photon signals into the stimulation of biochemical/differentiating pathways involving key activators that regulate de novo actin polymerization. Namely, for the first time, we unearthed the role of the flat-top hand-piece at higher-fluence irradiation on cytoskeletal characteristics of BMSCs. These novel findings meet the needs of novel therapeutically protocols provided by laser treatment and the manipulation of BMSCs as anti-inflammatory, osteo-inductive platforms.
The effects of 808-nm near-infrared laser light irradiation on actin cytoskeleton reorganization in bone marrow mesenchymal stem cells
Amaroli A.;Benedicenti S.;Agas D.
2021-01-01
Abstract
Tailoring the cell organelles and thus changing cell homeostatic behavior has permitted the discovery of fascinating metabolic features enabling enhanced viability, differentiation, or quenching inflammation. Recently, photobiomodulation (PBM) has been accredited as an effective cell manipulation technique with promising therapeutic potential. In this prospective, in vitro results revealed that 808-nm laser light emitted by a hand-piece with a flat-top profile at an irradiation set up of 60 J/cm2 (1 W, 1 W/cm2; 60 s, continuous wave) regulates bone marrow stromal cell (BMSC) differentiation toward osteogenesis. Considering the importance of actin cytoskeleton reorganization, which controls a range of cell metabolic activities, comprising shape change, proliferation and differentiation, the aim of the current work is to assess whether PBM therapy, using a flat-top hand-piece at higher-fluence irradiation on BMSCs, is able to switch photon signals into the stimulation of biochemical/differentiating pathways involving key activators that regulate de novo actin polymerization. Namely, for the first time, we unearthed the role of the flat-top hand-piece at higher-fluence irradiation on cytoskeletal characteristics of BMSCs. These novel findings meet the needs of novel therapeutically protocols provided by laser treatment and the manipulation of BMSCs as anti-inflammatory, osteo-inductive platforms.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.