The focus of the present paper is the development of a resilience framework suitable to be applied in assessing the safety of ship LNG (Liquefied Natural Gas) bunkering process. Ship propulsion considering LNG as a possible fuel (with dual fuel marine engines installed on board) has favored important discussions about the LNG supply chain and delivery on board to the ship power plant. Within this context, a resilience methodological approach is outlined, including a case study application, to demonstrate its actual effectiveness. With specific reference to the operative steps for LNG bunkering operations in the maritime field, a dynamic model based on Bayesian inference and MCMC simulations can be built, involving the probability of operational perturbations, together with their updates based on the hard (failures) and soft (process variables deviations) evidence emerging during LNG bunkering operations. The approach developed in this work, based on advanced Markov Models and variational fitting algorithms, has proven to be a useful and flexible tool to study, analyze and verify how much the perturbations of systems and subsystems can be absorbed without leading to failure.

Resilience dynamic assessment based on precursor events: Application to ship lng bunkering operations

Vairo T.;Gualeni P.;Reverberi A. P.;Fabiano B.
2021-01-01

Abstract

The focus of the present paper is the development of a resilience framework suitable to be applied in assessing the safety of ship LNG (Liquefied Natural Gas) bunkering process. Ship propulsion considering LNG as a possible fuel (with dual fuel marine engines installed on board) has favored important discussions about the LNG supply chain and delivery on board to the ship power plant. Within this context, a resilience methodological approach is outlined, including a case study application, to demonstrate its actual effectiveness. With specific reference to the operative steps for LNG bunkering operations in the maritime field, a dynamic model based on Bayesian inference and MCMC simulations can be built, involving the probability of operational perturbations, together with their updates based on the hard (failures) and soft (process variables deviations) evidence emerging during LNG bunkering operations. The approach developed in this work, based on advanced Markov Models and variational fitting algorithms, has proven to be a useful and flexible tool to study, analyze and verify how much the perturbations of systems and subsystems can be absorbed without leading to failure.
File in questo prodotto:
File Dimensione Formato  
Resilience dynamic.pdf

accesso aperto

Tipologia: Documento in versione editoriale
Dimensione 2.45 MB
Formato Adobe PDF
2.45 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1066899
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 10
social impact