GABAA receptor (GABAA R)-mediated depolarization of dorsal root ganglia (DRG) axonal projections in the spinal dorsal horn is implicated in pre-synaptic inhibition. Inhibition, in this case, is predicated on an elevated intra-axonal chloride concentration and a depolarizing GABA response. In the present study, we report that the peripheral axons of DRG neurons are also depolarized by GABA and this results in an increase in the electrical excitability of unmyelinated C-fibre axons. GABAA R agonists increased axonal excitability, whereas GABA excitability responses were blocked by GABAA R antagonists and were absent in mice lacking the GABAA R β3 subunit selectively in DRG neurons (AdvillinCre or snsCre ). Under control conditions, excitability responses to GABA became larger at higher rates of electrical stimulation (0.5-2.5 Hz). However, during Na-K-Cl cotransporter type 1 (NKCC1) blockade, the electrical stimulation rate did not affect GABA response size, suggesting that NKCC1 regulation of axonal chloride is coupled to action potential firing. To examine this, activity-dependent conduction velocity slowing (activity-dependent slowing; ADS) was used to quantify C-fibre excitability loss during a 2.5 Hz challenge. ADS was reduced by GABAA R agonists and exacerbated by either GABAA R antagonists, β3 deletion or NKCC1 blockade. This illustrates that activation of GABAA R stabilizes C-fibre excitability during sustained firing. We posit that NKCC1 acts in a feed-forward manner to maintain an elevated intra-axonal chloride in C-fibres during ongoing firing. The resulting chloride gradient can be utilized by GABAA R to stabilize axonal excitability. The data imply that therapeutic strategies targeting axonal chloride regulation at peripheral loci of pain and itch may curtail aberrant firing in C-fibres.

Axonal GABAA stabilizes excitability in unmyelinated sensory axons secondary to NKCC1 activity

Milanese M;Bonanno G;
2021-01-01

Abstract

GABAA receptor (GABAA R)-mediated depolarization of dorsal root ganglia (DRG) axonal projections in the spinal dorsal horn is implicated in pre-synaptic inhibition. Inhibition, in this case, is predicated on an elevated intra-axonal chloride concentration and a depolarizing GABA response. In the present study, we report that the peripheral axons of DRG neurons are also depolarized by GABA and this results in an increase in the electrical excitability of unmyelinated C-fibre axons. GABAA R agonists increased axonal excitability, whereas GABA excitability responses were blocked by GABAA R antagonists and were absent in mice lacking the GABAA R β3 subunit selectively in DRG neurons (AdvillinCre or snsCre ). Under control conditions, excitability responses to GABA became larger at higher rates of electrical stimulation (0.5-2.5 Hz). However, during Na-K-Cl cotransporter type 1 (NKCC1) blockade, the electrical stimulation rate did not affect GABA response size, suggesting that NKCC1 regulation of axonal chloride is coupled to action potential firing. To examine this, activity-dependent conduction velocity slowing (activity-dependent slowing; ADS) was used to quantify C-fibre excitability loss during a 2.5 Hz challenge. ADS was reduced by GABAA R agonists and exacerbated by either GABAA R antagonists, β3 deletion or NKCC1 blockade. This illustrates that activation of GABAA R stabilizes C-fibre excitability during sustained firing. We posit that NKCC1 acts in a feed-forward manner to maintain an elevated intra-axonal chloride in C-fibres during ongoing firing. The resulting chloride gradient can be utilized by GABAA R to stabilize axonal excitability. The data imply that therapeutic strategies targeting axonal chloride regulation at peripheral loci of pain and itch may curtail aberrant firing in C-fibres.
File in questo prodotto:
File Dimensione Formato  
61-2021-Axonal GABA A stabilises excitability in unmyelinated sensory axons secondary to NKCC1 activity_J Physiology.pdf

accesso aperto

Tipologia: Documento in versione editoriale
Dimensione 3.77 MB
Formato Adobe PDF
3.77 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1066594
Citazioni
  • ???jsp.display-item.citation.pmc??? 8
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 14
social impact