This paper analyzes the numerical stability of Markowitz portfolio optimization model, by identifying and studying a source of instability, that strictly depends on the mathematical structure of the optimization problem and its constraints. As a consequence, it is shown how standard portfolio optimization models can result in an unstable model also when the covariance matrix is well conditioned and the objective function is numerically stable. This depends on the fact that the linear equality constraints of the model very often suffer of almost collinearity and/or bad scaling. A theoretical approach is proposed that exploiting an equivalent formulation of the original optimization problem considerably reduces such structural component of instability. The effectiveness of the proposal is empirically certified through applications on real financial data when numerical optimization approaches are needed to compute the optimal portfolio. Gurobi and MATLAB’s solvers quadprog and fmincon are compared in terms of convergence performances.
A rescaling technique to improve numerical stability of portfolio optimization problems
Torrente, Maria-Laura;Uberti, Pierpaolo
2022-01-01
Abstract
This paper analyzes the numerical stability of Markowitz portfolio optimization model, by identifying and studying a source of instability, that strictly depends on the mathematical structure of the optimization problem and its constraints. As a consequence, it is shown how standard portfolio optimization models can result in an unstable model also when the covariance matrix is well conditioned and the objective function is numerically stable. This depends on the fact that the linear equality constraints of the model very often suffer of almost collinearity and/or bad scaling. A theoretical approach is proposed that exploiting an equivalent formulation of the original optimization problem considerably reduces such structural component of instability. The effectiveness of the proposal is empirically certified through applications on real financial data when numerical optimization approaches are needed to compute the optimal portfolio. Gurobi and MATLAB’s solvers quadprog and fmincon are compared in terms of convergence performances.File | Dimensione | Formato | |
---|---|---|---|
soft computing.pdf
accesso chiuso
Tipologia:
Documento in versione editoriale
Dimensione
357.83 kB
Formato
Adobe PDF
|
357.83 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.