Background: Defining immune mechanisms leading to multiple sclerosis (MS) is difficult, due to the great inter-individual difference in immune system responses. The anti-CD52 antibody alemtuzumab transiently abolishes differences in immune parameters among individuals, allowing analysis of subsequent immune cell repopulation patterns, and their possible role in MS. Objective: To evaluate the correlation between innate and adaptive immune cell subsets and disease activity in MS in the context of treatment with alemtuzumab. Methods: A two-center observational cohort of patients treated with alemtuzumab underwent immune profiling of T, B, and natural killer (NK) cells, biomarker, clinical and radiological follow-up. Results: After treatment, the percentage of NK and B cells increased; NK, T- and B-cell populations underwent a profound rearrangement. Within the effector T-cell compartment, treatment led to a transient decrease, followed by an increase, of T-helper 1 cells, and to a transient decrease of T-helper 17 cells. Within the T-regulatory compartment, naïve T-regulatory cells increased. Within the B-cell compartment, memory B cells and mature B cells decreased, whereas transitional B cells increased. Within the NK cell compartment, CD56bright NK cells increased. Subjects without disease activity had a greater decrease in serum NfL and greater NK cell/CD3+ T cell ratio. NK cell numbers at baseline and after treatment influenced reconstitution of T and B cells, being inversely correlated with the reconstitution of proinflammatory CD3+ T cells and mature B cells, and directly correlated to the increase in transitional B cells. Conclusions: The results of this study provide novel evidence that NK cells influence reconstitution of adaptive immune cells upon alemtuzumab and that patients with a successful response to alemtuzumab have an early immune reconstitution dominated by NK cells.
Impact of Natural Killer (NK) Cells on Immune Reconstitution, and Their Potential as a Biomarker of Disease Activity, in Alemtuzumab-Treated Patients with Relapsing Remitting Multiple Sclerosis: An Observational Study
Palmeri, Serena;Ponzano, Marta;Ivaldi, Federico;Signori, Alessio;Lapucci, Caterina;Vigo, Tiziana;Inglese, Matilde;Mancardi, Giovanni Luigi;Uccelli, Antonio;Laroni, Alice
2021-01-01
Abstract
Background: Defining immune mechanisms leading to multiple sclerosis (MS) is difficult, due to the great inter-individual difference in immune system responses. The anti-CD52 antibody alemtuzumab transiently abolishes differences in immune parameters among individuals, allowing analysis of subsequent immune cell repopulation patterns, and their possible role in MS. Objective: To evaluate the correlation between innate and adaptive immune cell subsets and disease activity in MS in the context of treatment with alemtuzumab. Methods: A two-center observational cohort of patients treated with alemtuzumab underwent immune profiling of T, B, and natural killer (NK) cells, biomarker, clinical and radiological follow-up. Results: After treatment, the percentage of NK and B cells increased; NK, T- and B-cell populations underwent a profound rearrangement. Within the effector T-cell compartment, treatment led to a transient decrease, followed by an increase, of T-helper 1 cells, and to a transient decrease of T-helper 17 cells. Within the T-regulatory compartment, naïve T-regulatory cells increased. Within the B-cell compartment, memory B cells and mature B cells decreased, whereas transitional B cells increased. Within the NK cell compartment, CD56bright NK cells increased. Subjects without disease activity had a greater decrease in serum NfL and greater NK cell/CD3+ T cell ratio. NK cell numbers at baseline and after treatment influenced reconstitution of T and B cells, being inversely correlated with the reconstitution of proinflammatory CD3+ T cells and mature B cells, and directly correlated to the increase in transitional B cells. Conclusions: The results of this study provide novel evidence that NK cells influence reconstitution of adaptive immune cells upon alemtuzumab and that patients with a successful response to alemtuzumab have an early immune reconstitution dominated by NK cells.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.