Lignin, a structural component of lignocellulosic plants, is an alternative raw material with enormous potential to replace diminishing fossil-based resources for the sustainable production of many chemicals and materials. Unfortunately, lignin’s heterogeneity, low reactivity, and strong intra- and intermolecular hydrogen interactions and modifications introduced during the pulping process present significant technical challenges. However, the increasing ability to tailor lignin biosynthesis pathways by targeting enzymes and the continued discovery of more robust biocatalysts are enabling the synthesis of novel valuable products. This review summarizes how enzymes involved in lignin biosynthesis pathways and microbial enzymes are being harnessed to produce chemicals and materials and to upgrade lignin properties for the synthesis of a variety of value-added lignin industrial products.

Harnessing the Power of Enzymes for Tailoring and Valorizing Lignin

Pellis A;
2020-01-01

Abstract

Lignin, a structural component of lignocellulosic plants, is an alternative raw material with enormous potential to replace diminishing fossil-based resources for the sustainable production of many chemicals and materials. Unfortunately, lignin’s heterogeneity, low reactivity, and strong intra- and intermolecular hydrogen interactions and modifications introduced during the pulping process present significant technical challenges. However, the increasing ability to tailor lignin biosynthesis pathways by targeting enzymes and the continued discovery of more robust biocatalysts are enabling the synthesis of novel valuable products. This review summarizes how enzymes involved in lignin biosynthesis pathways and microbial enzymes are being harnessed to produce chemicals and materials and to upgrade lignin properties for the synthesis of a variety of value-added lignin industrial products.
File in questo prodotto:
File Dimensione Formato  
RWE 2020 - review.pdf

accesso chiuso

Tipologia: Documento in versione editoriale
Dimensione 2.48 MB
Formato Adobe PDF
2.48 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1062377
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 38
  • ???jsp.display-item.citation.isi??? 36
social impact