Nanotechnology is an important application in modern cancer therapy. In comparison with conventional drug formulations, nanoparticles ensure better penetration into the tumor mass by exploiting the enhanced permeability and retention effect, longer blood circulation times by a reduced renal excretion and a decrease in side effects and drug accumulation in healthy tissues. The most significant classes of nanoparticles (i.e., liposomes, inorganic and organic nanoparticles) are here discussed with a particular focus on their use as delivery systems for small molecule tyrosine kinase inhibitors (TKIs). A number of these new compounds (e.g., Imatinib, Dasatinib, Ponatinib) have been approved as first-line therapy in different cancer types but their clinical use is limited by poor solubility and oral bioavailability. Consequently, new nanoparticle systems are necessary to ameliorate formulations and reduce toxicity. In this review, some of the most important TKIs are reported, focusing on ongoing clinical studies, and the recent drug delivery systems for these molecules are investigated.

Nanotechnology of tyrosine kinase inhibitors in cancer therapy: A perspective

Eleonora Russo;Andrea Spallarossa;Bruno Tasso;Carla Villa;Chiara Brullo
2021-01-01

Abstract

Nanotechnology is an important application in modern cancer therapy. In comparison with conventional drug formulations, nanoparticles ensure better penetration into the tumor mass by exploiting the enhanced permeability and retention effect, longer blood circulation times by a reduced renal excretion and a decrease in side effects and drug accumulation in healthy tissues. The most significant classes of nanoparticles (i.e., liposomes, inorganic and organic nanoparticles) are here discussed with a particular focus on their use as delivery systems for small molecule tyrosine kinase inhibitors (TKIs). A number of these new compounds (e.g., Imatinib, Dasatinib, Ponatinib) have been approved as first-line therapy in different cancer types but their clinical use is limited by poor solubility and oral bioavailability. Consequently, new nanoparticle systems are necessary to ameliorate formulations and reduce toxicity. In this review, some of the most important TKIs are reported, focusing on ongoing clinical studies, and the recent drug delivery systems for these molecules are investigated.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1060405
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 10
social impact