The present work is intended in providing new and innovative instruments to support the photogrammetric survey workflow during all its phases. A suite of tools has been conceived in order to manage the planning, the acquisition, the post-processing and the restitution steps, with particular attention to the rigorousness of the approach and to the final precision. The main focus of the research has been the implementation of the tool MAGO, standing for Adaptive Mesh for Orthophoto Generation. Its novelty consists in the possibility to automatically reconstruct “unrolled” orthophotos of adjacent façades of a building using the point cloud, instead of the mesh, as input source for the orthophoto reconstruction. The second tool has been conceived as a photogrammetric procedure based on Bundle Block Adjustment. The same issue is analysed from two mirrored perspectives: on the one hand, the use of moving cameras in a static scenario in order to manage real-time indoor navigation; on the other hand, the use of static cameras in a moving scenario in order to achieve the simultaneously reconstruction of the 3D model of the changing object. A third tool named U.Ph.O., standing for Unmanned Photogrammetric Office, has been integrated with a new module. The general aim is on the one hand to plan the photogrammetric survey considering the expected precision, computed on the basis of a network simulation, and on the other hand to check if the achieved survey has been collected compatibly with the planned conditions. The provided integration concerns the treatment of surfaces with a generic orientation further than the ones with a planimetric development. After a brief introduction, a general description about the photogrammetric principles is given in the first chapter of the dissertation; a chapter follows about the parallelism between Photogrammetry and Computer Vision and the contribution of this last in the development of the described tools. The third chapter specifically regards, indeed, the implemented software and tools, while the fourth contains the training test and the validation. Finally, conclusions and future perspectives are reported.

Photogrammetric suite to manage the survey workflow in challenging environments and conditions

GAGLIOLO, SARA
2021

Abstract

The present work is intended in providing new and innovative instruments to support the photogrammetric survey workflow during all its phases. A suite of tools has been conceived in order to manage the planning, the acquisition, the post-processing and the restitution steps, with particular attention to the rigorousness of the approach and to the final precision. The main focus of the research has been the implementation of the tool MAGO, standing for Adaptive Mesh for Orthophoto Generation. Its novelty consists in the possibility to automatically reconstruct “unrolled” orthophotos of adjacent façades of a building using the point cloud, instead of the mesh, as input source for the orthophoto reconstruction. The second tool has been conceived as a photogrammetric procedure based on Bundle Block Adjustment. The same issue is analysed from two mirrored perspectives: on the one hand, the use of moving cameras in a static scenario in order to manage real-time indoor navigation; on the other hand, the use of static cameras in a moving scenario in order to achieve the simultaneously reconstruction of the 3D model of the changing object. A third tool named U.Ph.O., standing for Unmanned Photogrammetric Office, has been integrated with a new module. The general aim is on the one hand to plan the photogrammetric survey considering the expected precision, computed on the basis of a network simulation, and on the other hand to check if the achieved survey has been collected compatibly with the planned conditions. The provided integration concerns the treatment of surfaces with a generic orientation further than the ones with a planimetric development. After a brief introduction, a general description about the photogrammetric principles is given in the first chapter of the dissertation; a chapter follows about the parallelism between Photogrammetry and Computer Vision and the contribution of this last in the development of the described tools. The third chapter specifically regards, indeed, the implemented software and tools, while the fourth contains the training test and the validation. Finally, conclusions and future perspectives are reported.
File in questo prodotto:
File Dimensione Formato  
phdunige_3658228.pdf

accesso aperto

Tipologia: Tesi di dottorato
Dimensione 5.84 MB
Formato Adobe PDF
5.84 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1059156
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact