A constitutive law describing the Reynolds stresses in boundary layers undergoing laminar-to-turbulent transition, constructed in previous work by elastic-net regression on an experimental data base, is used to improve an algebraic intermittency model for cases with transition in a separated layer influenced by a high level of free-stream turbulence. The intermittency model is combined with a k-ω turbulence model and the basic version, developed in previous work, functions well for bypass transition in attached boundary layers and for transition in separated boundary layers under a low free-stream turbulence level. The basic model version is extended by an additional production term in the transport equation for turbulent kinetic energy. A sensor detects the front part of a separated layer and activates the production term. The term expresses the effect of Klebanoff streaks generated upstream of separation on the Kelvin-Helmholtz instability rolls in the separated part of the layer. The Klebanoff streaks cause faster breakdown by the combined effects of a large adverse pressure gradient and an elevated free-stream turbulence level. The extended model does not alter the results of the basic model version for bypass transition in an attached boundary layer and for transition in a separated boundary layer under a low free-stream turbulence level. The extended model significantly improves the predictions of the previous model version for transition in a separated boundary layer under a high free-stream turbulence level.
Extension of an algebraic intermittency model for better prediction of transition in separated layers under strong free-stream turbulence
Simoni D.;Lengani D.;Dellacasagrande M.;
2021-01-01
Abstract
A constitutive law describing the Reynolds stresses in boundary layers undergoing laminar-to-turbulent transition, constructed in previous work by elastic-net regression on an experimental data base, is used to improve an algebraic intermittency model for cases with transition in a separated layer influenced by a high level of free-stream turbulence. The intermittency model is combined with a k-ω turbulence model and the basic version, developed in previous work, functions well for bypass transition in attached boundary layers and for transition in separated boundary layers under a low free-stream turbulence level. The basic model version is extended by an additional production term in the transport equation for turbulent kinetic energy. A sensor detects the front part of a separated layer and activates the production term. The term expresses the effect of Klebanoff streaks generated upstream of separation on the Kelvin-Helmholtz instability rolls in the separated part of the layer. The Klebanoff streaks cause faster breakdown by the combined effects of a large adverse pressure gradient and an elevated free-stream turbulence level. The extended model does not alter the results of the basic model version for bypass transition in an attached boundary layer and for transition in a separated boundary layer under a low free-stream turbulence level. The extended model significantly improves the predictions of the previous model version for transition in a separated boundary layer under a high free-stream turbulence level.File | Dimensione | Formato | |
---|---|---|---|
JHFF_2021.pdf
accesso chiuso
Descrizione: Articolo su rivista
Tipologia:
Documento in versione editoriale
Dimensione
5 MB
Formato
Adobe PDF
|
5 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.