Inhibition of intracellular N-acylethanolamine-hydrolyzing acid amidase (NAAA) activity is a promising approach to manage the inflammatory response under disabling conditions. In fact, NAAA inhibition preserves endogenous palmitoylethanolamide (PEA) from degradation, thus increasing and prolonging its anti-inflammatory and analgesic efficacy at the inflamed site. In the present work, we report the identification of a potent, systemically available, novel class of NAAA inhibitors, featuring a pyrazole azabicyclo[3.2.1]octane structural core. After an initial screening campaign, a careful structure-activity relationship study led to the discovery of endo-ethoxymethyl-pyrazinyloxy-8-azabicyclo[3.2.1]octane-pyrazole sulfonamide 50 (ARN19689), which was found to inhibit human NAAA in the low nanomolar range (IC50 = 0.042 μM) with a non-covalent mechanism of action. In light of its favorable biochemical, in vitro and in vivo drug-like profile, sulfonamide 50 could be regarded as a promising pharmacological tool to be further investigated in the field of inflammatory conditions.
Discovery and SAR Evolution of Pyrazole Azabicyclo[3.2.1]octane Sulfonamides as a Novel Class of Non-Covalent N‑Acylethanolamine-Hydrolyzing Acid Amidase (NAAA) Inhibitors for Oral Administration
Anna Carbone;
2021-01-01
Abstract
Inhibition of intracellular N-acylethanolamine-hydrolyzing acid amidase (NAAA) activity is a promising approach to manage the inflammatory response under disabling conditions. In fact, NAAA inhibition preserves endogenous palmitoylethanolamide (PEA) from degradation, thus increasing and prolonging its anti-inflammatory and analgesic efficacy at the inflamed site. In the present work, we report the identification of a potent, systemically available, novel class of NAAA inhibitors, featuring a pyrazole azabicyclo[3.2.1]octane structural core. After an initial screening campaign, a careful structure-activity relationship study led to the discovery of endo-ethoxymethyl-pyrazinyloxy-8-azabicyclo[3.2.1]octane-pyrazole sulfonamide 50 (ARN19689), which was found to inhibit human NAAA in the low nanomolar range (IC50 = 0.042 μM) with a non-covalent mechanism of action. In light of its favorable biochemical, in vitro and in vivo drug-like profile, sulfonamide 50 could be regarded as a promising pharmacological tool to be further investigated in the field of inflammatory conditions.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.