Next-generation sequencing (NGS) is the technology of choice for the routine screening of tumor samples in clinical practice. In this setting, the targeted sequencing of a restricted number of clinically relevant genes represents the most practical option when looking for genetic variants associated with cancer, as well as for the choice of targeted treatments. In this review, we analyze available NGS platforms and clinical applications of multi-gene testing in breast cancer, with a focus on metastatic triple-negative breast cancer (mTNBC). We make an overview of the clinical utility of multi-gene testing in mTNBC, and then, as immunotherapy is emerging as a possible targeted therapy for mTNBC, we also briefly report on the results of the latest clinical trials involving immune checkpoint inhibitors (ICIs) and TNBC, where NGS could play a role for the potential predictive utility of homologous recombination repair deficiency (HRD) and tumor mutational burden (TMB).

Multi-gene testing overview with a clinical perspective in metastatic triple-negative breast cancer

Ferrando L.;Cirmena G.;Vernieri C.;Ballestrero A.;Zoppoli G.
2021

Abstract

Next-generation sequencing (NGS) is the technology of choice for the routine screening of tumor samples in clinical practice. In this setting, the targeted sequencing of a restricted number of clinically relevant genes represents the most practical option when looking for genetic variants associated with cancer, as well as for the choice of targeted treatments. In this review, we analyze available NGS platforms and clinical applications of multi-gene testing in breast cancer, with a focus on metastatic triple-negative breast cancer (mTNBC). We make an overview of the clinical utility of multi-gene testing in mTNBC, and then, as immunotherapy is emerging as a possible targeted therapy for mTNBC, we also briefly report on the results of the latest clinical trials involving immune checkpoint inhibitors (ICIs) and TNBC, where NGS could play a role for the potential predictive utility of homologous recombination repair deficiency (HRD) and tumor mutational burden (TMB).
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11567/1055424
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact