Cadmium-free buffer layers deposited by a dry vacuum process are mandatory for low-cost and environmentally friendly Cu(In1–xGax)Se2 (CIGS) photovoltaic in-line production. Zn(O,S) has been identified as an alternative to the chemical bath deposited CdS buffer layer, providing comparable power conversion efficiencies. Recently, a significant efficiency enhancement has been reported for sputtered Zn(O,S) buffers after an annealing treatment of the complete solar cell stack; the enhancement was attributed to interdiffusion at the CIGS/Zn(O,S) interface, resulting in wide-gap ZnSO4 islands formation and reduced interface defects. Here, we exclude interdiffusion or island formation at the absorber/buffer interface after annealing up to 200 °C using high-resolution scanning transmission electron microscopy (HR-STEM) and energy-dispersive X-ray spectroscopy (EDX). Interestingly, HR-STEM imaging reveals an epitaxial relationship between a part of the Zn(O,S) buffer layer grains and the CIGS grains induced by annealing at such a low temperature. This alteration of the CIGS/buffer interface is expected to lead to a lower density of interface defects, and could explain the efficiency enhancement observed upon annealing the solar cell stack, although other causes cannot be excluded.

Atomic-Scale Interface Modification Improves the Performance of Cu(In1–xGax)Se2/Zn(O,S) Heterojunction Solar Cells

Colombara, Diego;
2021-01-01

Abstract

Cadmium-free buffer layers deposited by a dry vacuum process are mandatory for low-cost and environmentally friendly Cu(In1–xGax)Se2 (CIGS) photovoltaic in-line production. Zn(O,S) has been identified as an alternative to the chemical bath deposited CdS buffer layer, providing comparable power conversion efficiencies. Recently, a significant efficiency enhancement has been reported for sputtered Zn(O,S) buffers after an annealing treatment of the complete solar cell stack; the enhancement was attributed to interdiffusion at the CIGS/Zn(O,S) interface, resulting in wide-gap ZnSO4 islands formation and reduced interface defects. Here, we exclude interdiffusion or island formation at the absorber/buffer interface after annealing up to 200 °C using high-resolution scanning transmission electron microscopy (HR-STEM) and energy-dispersive X-ray spectroscopy (EDX). Interestingly, HR-STEM imaging reveals an epitaxial relationship between a part of the Zn(O,S) buffer layer grains and the CIGS grains induced by annealing at such a low temperature. This alteration of the CIGS/buffer interface is expected to lead to a lower density of interface defects, and could explain the efficiency enhancement observed upon annealing the solar cell stack, although other causes cannot be excluded.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1055280
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact