A complete cell consisting of NiO-Ce0.8Sm0.2O3−δ//Ce0.8Sm0.2O3−δ//(La0.6Sr0.4)0.95Co0.2Fe0.8O3−δ elaborated by a co-tape casting and co-sintering process and tested in operating fuel cell conditions exhibited a strong degradation in performance over time. Study of the cathode–electrolyte interface after cell testing showed, on one hand, the diffusion of lanthanum from (La0.6Sr0.4)0.95Co0.2Fe0.8O3−δ into Sm-doped ceria leading to a La-and Sm-doped ceria phase. On the other hand, Ce and Sm diffused into the perovskite phase of the cathode. The grain boundaries appear to be the preferred pathways of the cation diffusion. Furthermore, a strontium enrichment was clearly observed both in the (La0.6Sr0.4)0.95Co0.2Fe0.8O3−δ layer and at the interface with electrolyte. X-ray photoelectron spectroscopy (XPS) indicates that this Sr-rich phase corresponded to SrCO3. These different phenomena led to a chemical degradation of materials and interfaces, explaining the decrease in electrochemical performance.

Chemical degradation of the la0.6sr0.4co0.2fe0.8o3−δ/ ce0.8sm0.2o2−δ interface during sintering and cell operation

Carpanese M. P.;Clematis D.;
2021-01-01

Abstract

A complete cell consisting of NiO-Ce0.8Sm0.2O3−δ//Ce0.8Sm0.2O3−δ//(La0.6Sr0.4)0.95Co0.2Fe0.8O3−δ elaborated by a co-tape casting and co-sintering process and tested in operating fuel cell conditions exhibited a strong degradation in performance over time. Study of the cathode–electrolyte interface after cell testing showed, on one hand, the diffusion of lanthanum from (La0.6Sr0.4)0.95Co0.2Fe0.8O3−δ into Sm-doped ceria leading to a La-and Sm-doped ceria phase. On the other hand, Ce and Sm diffused into the perovskite phase of the cathode. The grain boundaries appear to be the preferred pathways of the cation diffusion. Furthermore, a strontium enrichment was clearly observed both in the (La0.6Sr0.4)0.95Co0.2Fe0.8O3−δ layer and at the interface with electrolyte. X-ray photoelectron spectroscopy (XPS) indicates that this Sr-rich phase corresponded to SrCO3. These different phenomena led to a chemical degradation of materials and interfaces, explaining the decrease in electrochemical performance.
File in questo prodotto:
File Dimensione Formato  
energies-14-03674-v3(1).pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Documento in versione editoriale
Dimensione 4.22 MB
Formato Adobe PDF
4.22 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1055178
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact