Listeria monocytogenes is one of the foodborne pathogens of most concern for food safety. To limit its presence in foods, bacteriocins have been proposed as natural bio-preservatives. Herein, a bacteriocin was produced on hemicellulose hydrolysate of sugarcane bagasse by Pediococcus pentosaceous ET34, whose genome sequencing revealed an operon with 100% similarity to that of pediocin PA-1. ET34 grown on hydrolysate-containing medium led to an increase in the expression of PA-1 genes and a non-optimized purification step sequence resulted in a yield of 0.8 mg·L-1 of pure pediocin (purity > 95%). Culture conditions were optimized according to a central composite design using temperature and hydrolysate % as independent variables and validated in 3-L Erlenmeyers. Finally, a process for scaled-up implementation by sugar-ethanol industry was proposed, considering green chemistry and biorefinery concepts. This work stands up as an approach addressing a future proper sugarcane bagasse valorisation for pediocin production.

Pediocin PA-1 production by Pediococcus pentosaceus ET34 using non-detoxified hemicellulose hydrolysate obtained from hydrothermal pretreatment of sugarcane bagasse

Converti A.;
2021-01-01

Abstract

Listeria monocytogenes is one of the foodborne pathogens of most concern for food safety. To limit its presence in foods, bacteriocins have been proposed as natural bio-preservatives. Herein, a bacteriocin was produced on hemicellulose hydrolysate of sugarcane bagasse by Pediococcus pentosaceous ET34, whose genome sequencing revealed an operon with 100% similarity to that of pediocin PA-1. ET34 grown on hydrolysate-containing medium led to an increase in the expression of PA-1 genes and a non-optimized purification step sequence resulted in a yield of 0.8 mg·L-1 of pure pediocin (purity > 95%). Culture conditions were optimized according to a central composite design using temperature and hydrolysate % as independent variables and validated in 3-L Erlenmeyers. Finally, a process for scaled-up implementation by sugar-ethanol industry was proposed, considering green chemistry and biorefinery concepts. This work stands up as an approach addressing a future proper sugarcane bagasse valorisation for pediocin production.
File in questo prodotto:
File Dimensione Formato  
A378.pdf

accesso chiuso

Descrizione: Articolo su rivista
Tipologia: Documento in versione editoriale
Dimensione 6.4 MB
Formato Adobe PDF
6.4 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1052411
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 12
social impact