Titanium is the ninth most abundant element, approximately 0.7% of the Earth crust. It is used worldwide in large quantities for various applications. The IARC includes TiO2 in Group 2B as possibly carcinogenic to humans suggesting that pathological effects correlate to particle size and shape. This study case quantifies the release of natural TiO2 particles during mining activity, involving meta-basalt and shale lithologies in the Ligurian Alps, during excavation of the Terzo Valico as part of the Trans-European Transport Network. Type, width, length, aspect ratio, and concentration of TiO2 particles in needle habit were determined. The different samplings have reported that airborne concentrations in meta-basalt were 4.21 ff/L and 23.94 ff/L in shale. In both cases, the concentration never exceeds the limits established by various organizations for workers health protection. Nevertheless, TiO2 elongated particles, recognized as rutile, showed the dimensional characteristic of fibres, as reported by WHO. These fibres deserve particular attention because they can reach the alveolar space and trigger inflammation and chronic diseases. The results indicate that monitoring the TiO2 in both working environments and Ti-rich geological formations, associated with epidemiological studies, may represent a useful tool to determine the exposure risk of workers and the general population.
Dispersion of Natural Airborne TiO2 Fibres in Excavation Activity as a Potential Environmental and Human Health Risk
La Maestra S.;D'agostini F.;Sanguineti E.;Annis S.;Militello G. M.;Gaggero L.
2021-01-01
Abstract
Titanium is the ninth most abundant element, approximately 0.7% of the Earth crust. It is used worldwide in large quantities for various applications. The IARC includes TiO2 in Group 2B as possibly carcinogenic to humans suggesting that pathological effects correlate to particle size and shape. This study case quantifies the release of natural TiO2 particles during mining activity, involving meta-basalt and shale lithologies in the Ligurian Alps, during excavation of the Terzo Valico as part of the Trans-European Transport Network. Type, width, length, aspect ratio, and concentration of TiO2 particles in needle habit were determined. The different samplings have reported that airborne concentrations in meta-basalt were 4.21 ff/L and 23.94 ff/L in shale. In both cases, the concentration never exceeds the limits established by various organizations for workers health protection. Nevertheless, TiO2 elongated particles, recognized as rutile, showed the dimensional characteristic of fibres, as reported by WHO. These fibres deserve particular attention because they can reach the alveolar space and trigger inflammation and chronic diseases. The results indicate that monitoring the TiO2 in both working environments and Ti-rich geological formations, associated with epidemiological studies, may represent a useful tool to determine the exposure risk of workers and the general population.File | Dimensione | Formato | |
---|---|---|---|
Dispersion of Natural Airborne TiO2 Fibres in Excavation.pdf
accesso aperto
Tipologia:
Documento in versione editoriale
Dimensione
2.34 MB
Formato
Adobe PDF
|
2.34 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.