Photoacoustic tomography (PAT) is an emerging imaging modality that aims at measuring the high-contrast optical properties of tissues by means of high-resolution ultrasonic measurements. The interaction between these two types of waves is based on the thermoacoustic effect. In recent years, many works have investigated the applicability of compressed sensing to PAT in order to reduce measuring times while maintaining a high reconstruction quality. However, in most cases, theoretical guarantees are missing. In this work, we show that in many measurement setups of practical interest, compressed sensing PAT reduces to compressed sensing for undersampled Fourier measurements. This is achieved by applying known reconstruction formulae in the case of the free-space model for wave propagation, and by applying the theories of Riesz bases and nonuniform Fourier series in the case of the bounded domain model. Extensive numerical simulations illustrate and validate the approach.

Compressed Sensing Photoacoustic Tomography Reduces to Compressed Sensing for Undersampled Fourier Measurements

Alberti, Giovanni S.;Santacesaria, Matteo
2021-01-01

Abstract

Photoacoustic tomography (PAT) is an emerging imaging modality that aims at measuring the high-contrast optical properties of tissues by means of high-resolution ultrasonic measurements. The interaction between these two types of waves is based on the thermoacoustic effect. In recent years, many works have investigated the applicability of compressed sensing to PAT in order to reduce measuring times while maintaining a high reconstruction quality. However, in most cases, theoretical guarantees are missing. In this work, we show that in many measurement setups of practical interest, compressed sensing PAT reduces to compressed sensing for undersampled Fourier measurements. This is achieved by applying known reconstruction formulae in the case of the free-space model for wave propagation, and by applying the theories of Riesz bases and nonuniform Fourier series in the case of the bounded domain model. Extensive numerical simulations illustrate and validate the approach.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1051652
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact