In neoplastic patients, an effective immune response ideally should be achieved by the coordinated action of different immune cells with tumor-suppressive functions. These include the more cytolytic members of the Innate Lymphoid Cells (ILCs) family represented by the Natural Killer (NK) cells, whose activities in cancer patients, however, can be hampered by several inhibitory signals. These are generated by membrane-bound and soluble molecules that, interacting with specific inhibitory receptors, create inhibitory axes impacting the NK cell differentiation and effector functions. These breaks, which now represent major immunotherapeutic targets, may be sensitive to interferon (IFN)-γ, whose source, in vivo, is represented by different cell types including the NK and ILC1. Since also ILCs can express receptors of the inhibitory axes like PD-1 and TIGIT, their therapeutic blockade might further amplify the IFN-γ release that, as an unwanted side effect, would promote the onset of NK cell-resistant tumor variants (NKRTV) expressing ligands involved in inhibitory axes. These variants might also arise from the activity of other cytokines such as IL-27, which can increase the expression of HLA class I and PD-Ls in different cell types, including tumor cells. Besides the amplification of membrane-bound inhibitory axes, tumors can reduce the number of infiltrating cytolytic ILCs, promote the recruitment of poorly cytolytic NK cell subsets, and manipulate to their advantage the infiltrating immune cells, which acquire tumor-promoting activities. This occurs thanks to the production of soluble factors including TGF-β1 and IL-18 that, alone or in combination, modify the activating and chemokine receptor repertoire of NK cells, and induce the ILCs differentiation towards cells ineffective in fighting cancer or, even worse, with tumor-promoting functions. The present review aims to present and discuss major inhibitory axes impacting on ILCs functions, migration, and differentiation with a major focus on tumor context.

Inhibitory axes impacting on the activity and fate of Innate Lymphoid Cells

Bottino, Cristina;Dondero, Alessandra;Castriconi, Roberta
2021-01-01

Abstract

In neoplastic patients, an effective immune response ideally should be achieved by the coordinated action of different immune cells with tumor-suppressive functions. These include the more cytolytic members of the Innate Lymphoid Cells (ILCs) family represented by the Natural Killer (NK) cells, whose activities in cancer patients, however, can be hampered by several inhibitory signals. These are generated by membrane-bound and soluble molecules that, interacting with specific inhibitory receptors, create inhibitory axes impacting the NK cell differentiation and effector functions. These breaks, which now represent major immunotherapeutic targets, may be sensitive to interferon (IFN)-γ, whose source, in vivo, is represented by different cell types including the NK and ILC1. Since also ILCs can express receptors of the inhibitory axes like PD-1 and TIGIT, their therapeutic blockade might further amplify the IFN-γ release that, as an unwanted side effect, would promote the onset of NK cell-resistant tumor variants (NKRTV) expressing ligands involved in inhibitory axes. These variants might also arise from the activity of other cytokines such as IL-27, which can increase the expression of HLA class I and PD-Ls in different cell types, including tumor cells. Besides the amplification of membrane-bound inhibitory axes, tumors can reduce the number of infiltrating cytolytic ILCs, promote the recruitment of poorly cytolytic NK cell subsets, and manipulate to their advantage the infiltrating immune cells, which acquire tumor-promoting activities. This occurs thanks to the production of soluble factors including TGF-β1 and IL-18 that, alone or in combination, modify the activating and chemokine receptor repertoire of NK cells, and induce the ILCs differentiation towards cells ineffective in fighting cancer or, even worse, with tumor-promoting functions. The present review aims to present and discuss major inhibitory axes impacting on ILCs functions, migration, and differentiation with a major focus on tumor context.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1049857
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact