In Optimal Transport (OT) on a finite metric space, one de-fines a distance on the probability simplex that extends the distance on the ground space. The distance is the value of a Linear Programming (LP) problem on the set of non-negative-valued 2-way tables with assigned probability functions as margins. We apply to this case the methodology of moves from Algebraic Statistics (AS) and use it to derive a Monte Carlo Markov Chain (MCMC) solution algorithm.

Finite space Kantorovich problem with an MCMC of table moves

Pistone G.;Rapallo F.;Rogantin M. P.
2021-01-01

Abstract

In Optimal Transport (OT) on a finite metric space, one de-fines a distance on the probability simplex that extends the distance on the ground space. The distance is the value of a Linear Programming (LP) problem on the set of non-negative-valued 2-way tables with assigned probability functions as margins. We apply to this case the methodology of moves from Algebraic Statistics (AS) and use it to derive a Monte Carlo Markov Chain (MCMC) solution algorithm.
File in questo prodotto:
File Dimensione Formato  
EJS_2021.pdf

accesso aperto

Descrizione: paper open-access
Tipologia: Documento in versione editoriale
Dimensione 319.56 kB
Formato Adobe PDF
319.56 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1049568
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact