This work deals with metaheuristic optimization algorithms to derive the best parameters for the Gaussian Adaptive PID controller. This controller represents a multimodal problem, where several distinct solutions can achieve similar best performances, and metaheuristics optimization algorithms can behave differently during the optimization process. Finding the correct proportionality between the parameters is an arduous task that often does not have an algebraic solution. The Gaussian functions of each control action have three parameters, resulting in a total of nine parameters to be defined. In this work, we investigate three bio-inspired optimization methods dealing with this problem: Particle Swarm Optimization (PSO), the Artificial Bee Colony (ABC) algorithm, and the Whale Optimization Algorithm (WOA). The computational results considering the Buck converter with a resistive and a nonlinear load as a case study demonstrated that the methods were capable of solving the task. The results are presented and compared, and PSO achieved the best results.

Swarm-Inspired Algorithms to Optimize a Nonlinear Gaussian Adaptive PID Controller

Converti, Attilio;
2021-01-01

Abstract

This work deals with metaheuristic optimization algorithms to derive the best parameters for the Gaussian Adaptive PID controller. This controller represents a multimodal problem, where several distinct solutions can achieve similar best performances, and metaheuristics optimization algorithms can behave differently during the optimization process. Finding the correct proportionality between the parameters is an arduous task that often does not have an algebraic solution. The Gaussian functions of each control action have three parameters, resulting in a total of nine parameters to be defined. In this work, we investigate three bio-inspired optimization methods dealing with this problem: Particle Swarm Optimization (PSO), the Artificial Bee Colony (ABC) algorithm, and the Whale Optimization Algorithm (WOA). The computational results considering the Buck converter with a resistive and a nonlinear load as a case study demonstrated that the methods were capable of solving the task. The results are presented and compared, and PSO achieved the best results.
File in questo prodotto:
File Dimensione Formato  
A19b.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Documento in versione editoriale
Dimensione 641.34 kB
Formato Adobe PDF
641.34 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1048557
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact