We present 1 arc-minute Bouguer, Faye, free air and topography corrected gravity anomaly grids for the New Zealand region, 25°S to 60°S and 160°E to 170°W. The grids were compiled from existing terrestrial, marine and satellite altimetry-derived gravity data enhanced with new airborne gravimetry data that were acquired for improvement of the New Zealand vertical datum. The airborne data seamlessly cover onshore and offshore areas over New Zealand’s North, South and Stewart islands with a uniform flight line spacing of 10 km. All data were corrected for the gravitational effect of the Geodetic Reference System 1980 (GRS80) reference ellipsoid and tied to the International Gravity Standardization Net 1971 (I.G.S.N.71) gravity datum. The gravity anomaly data from all sources were combined using the method of least squares collocation with a three dimensional logarithmic covariance function. Terrain corrections for gravity anomaly grids were calculated using an 8 m digital elevation model for topography above sea level and a 250 m seafloor topography model.

Gravity anomaly grids for the New Zealand region

Caratori Tontini F.;
2017-01-01

Abstract

We present 1 arc-minute Bouguer, Faye, free air and topography corrected gravity anomaly grids for the New Zealand region, 25°S to 60°S and 160°E to 170°W. The grids were compiled from existing terrestrial, marine and satellite altimetry-derived gravity data enhanced with new airborne gravimetry data that were acquired for improvement of the New Zealand vertical datum. The airborne data seamlessly cover onshore and offshore areas over New Zealand’s North, South and Stewart islands with a uniform flight line spacing of 10 km. All data were corrected for the gravitational effect of the Geodetic Reference System 1980 (GRS80) reference ellipsoid and tied to the International Gravity Standardization Net 1971 (I.G.S.N.71) gravity datum. The gravity anomaly data from all sources were combined using the method of least squares collocation with a three dimensional logarithmic covariance function. Terrain corrections for gravity anomaly grids were calculated using an 8 m digital elevation model for topography above sea level and a 250 m seafloor topography model.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1047832
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 9
social impact