We have used free-air gravity satellite data from GEOSAT and ERS-1 missions to compile a Bouguer gravity map of the Mediterranean Sea. The complete Bouguer correction has been applied by using the method of Parker, that acts in the Fourier domain and permits the exact evaluation of the gravity contribution from an highly sampled topographic model of the land. The density used for the Bouguer reduction has been obtained from the gravity data set itself, by using two different optimization methods that have given the same optimal result of 2400 kg m-3. We have studied the radial power spectrum of the data, choosing the optimal Bouguer density from its slope, as the one which minimizes the fractal dimension of the resulting gravity map. The second approach consists of studying the correlation between topography and Bouguer anomaly by spatial cross-plots for a significant subset of the data. Both these approaches are aimed at reducing the short-wavelength effects of topography in the gravity map, but in the past they have been traditionally used alternatively since they gave different optimization values, especially the second method that seems to ignore large-wavelength isostatic effects. Actually, we have revisited both the methodologies, proposing slight modifications to make their efforts compatible. Their coincident results confirm their validity of application and give reliability to the recovered value of the Bouguer optimal density. Moreover, modifying the second approach allows us to compile a sort of normalized correlation map, which we propose in this paper, defining the 2-D isostatic setting of the investigated region without introducing any further lithospheric model. The final result is a revised Bouguer map compiled using a grid with a resolution of 2 min, that is useful for large-scale geological studies and gives important information about the compensation mechanism of the Mediterranean Sea: in a direct way we have found that the overall region seems to be in a complete isostatic equilibrium apart from the young basins of Tyrrhenian Sea and Aegean Sea, confirming previous similar results. © 2007 The Authors Journal compilation © 2007 RAS.
Determining the optimal Bouguer density for a gravity data set: implications for the isostatic setting of the Mediterranean Sea
Caratori Tontini F.;
2007-01-01
Abstract
We have used free-air gravity satellite data from GEOSAT and ERS-1 missions to compile a Bouguer gravity map of the Mediterranean Sea. The complete Bouguer correction has been applied by using the method of Parker, that acts in the Fourier domain and permits the exact evaluation of the gravity contribution from an highly sampled topographic model of the land. The density used for the Bouguer reduction has been obtained from the gravity data set itself, by using two different optimization methods that have given the same optimal result of 2400 kg m-3. We have studied the radial power spectrum of the data, choosing the optimal Bouguer density from its slope, as the one which minimizes the fractal dimension of the resulting gravity map. The second approach consists of studying the correlation between topography and Bouguer anomaly by spatial cross-plots for a significant subset of the data. Both these approaches are aimed at reducing the short-wavelength effects of topography in the gravity map, but in the past they have been traditionally used alternatively since they gave different optimization values, especially the second method that seems to ignore large-wavelength isostatic effects. Actually, we have revisited both the methodologies, proposing slight modifications to make their efforts compatible. Their coincident results confirm their validity of application and give reliability to the recovered value of the Bouguer optimal density. Moreover, modifying the second approach allows us to compile a sort of normalized correlation map, which we propose in this paper, defining the 2-D isostatic setting of the investigated region without introducing any further lithospheric model. The final result is a revised Bouguer map compiled using a grid with a resolution of 2 min, that is useful for large-scale geological studies and gives important information about the compensation mechanism of the Mediterranean Sea: in a direct way we have found that the overall region seems to be in a complete isostatic equilibrium apart from the young basins of Tyrrhenian Sea and Aegean Sea, confirming previous similar results. © 2007 The Authors Journal compilation © 2007 RAS.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.