Valorising biomass waste and producing renewable energy or materials is the aim of several conversion technologies. In this work, we consider two residues from different production chains: lignocellulosic residues from agriculture and wool residues from sheep husbandry. These materials are produced in large quantities, and their disposal is often costly and challenging for farmers. For their valorisation, we focus on slow pyrolysis for the former and water hydrolysis for the latter, concisely presenting the main literature related to these two processes. Pyrolysis produces the C-rich biochar, suitable for soil amending. Hydrolysis produces a N-rich fertiliser. We demonstrate how these two processes could be fruitfully integrated, as their products can be flexibly mixed to produce fertilisers. This solution would allow the achievement of balanced and tuneable ratios between C and N and the enhancement of the mechanical properties. We propose scenarios for this combined valorisation and for its coupling with other industries. As a result, biomass waste would be returned to the field, following the principles of circular economy.

An integrated approach to convert lignocellulosic and wool residues into balanced fertilisers

Marchelli F.;Rovero G.;Curti M.;Arato E.;Bosio B.;Moliner C.
2021-01-01

Abstract

Valorising biomass waste and producing renewable energy or materials is the aim of several conversion technologies. In this work, we consider two residues from different production chains: lignocellulosic residues from agriculture and wool residues from sheep husbandry. These materials are produced in large quantities, and their disposal is often costly and challenging for farmers. For their valorisation, we focus on slow pyrolysis for the former and water hydrolysis for the latter, concisely presenting the main literature related to these two processes. Pyrolysis produces the C-rich biochar, suitable for soil amending. Hydrolysis produces a N-rich fertiliser. We demonstrate how these two processes could be fruitfully integrated, as their products can be flexibly mixed to produce fertilisers. This solution would allow the achievement of balanced and tuneable ratios between C and N and the enhancement of the mechanical properties. We propose scenarios for this combined valorisation and for its coupling with other industries. As a result, biomass waste would be returned to the field, following the principles of circular economy.
File in questo prodotto:
File Dimensione Formato  
energies-14-00497.pdf

accesso aperto

Descrizione: Articolo su rivista
Tipologia: Documento in versione editoriale
Dimensione 507.33 kB
Formato Adobe PDF
507.33 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1047504
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 9
social impact