The goal of this paper is the experimental validation of a gray-box equivalent modeling approach applied to microgrids. The main objective of the equivalent modeling is to represent the dynamic response of a microgrid with a simplified model. The main contribution of this work is the experimental validation of a two-step process, composed by the definition of a nonlinear equivalent model with operational constraints, adapted to the microgrid environment, and the identification procedure used to define the model parameters. Once the parameters are identified, the simplified model is ready to reproduce the microgrid behavior to voltage and frequency variations, in terms of active and reactive power exchanges at the point of common coupling. To validate the proposed approach, a set of experimental tests have been carried out on a real LV microgrid considering different configurations, including both grid-connected and islanded operating conditions. Results show the effectiveness of the proposed technique and the applicability of the model to perform dynamic simulations.

Experimental Validation of a Dynamic Equivalent Model for Microgrids

F. Conte;F. D'Agostino;S. Massucco;F. Silvestro;
2021-01-01

Abstract

The goal of this paper is the experimental validation of a gray-box equivalent modeling approach applied to microgrids. The main objective of the equivalent modeling is to represent the dynamic response of a microgrid with a simplified model. The main contribution of this work is the experimental validation of a two-step process, composed by the definition of a nonlinear equivalent model with operational constraints, adapted to the microgrid environment, and the identification procedure used to define the model parameters. Once the parameters are identified, the simplified model is ready to reproduce the microgrid behavior to voltage and frequency variations, in terms of active and reactive power exchanges at the point of common coupling. To validate the proposed approach, a set of experimental tests have been carried out on a real LV microgrid considering different configurations, including both grid-connected and islanded operating conditions. Results show the effectiveness of the proposed technique and the applicability of the model to perform dynamic simulations.
File in questo prodotto:
File Dimensione Formato  
09372821.pdf

accesso aperto

Descrizione: Articolo su rivista
Tipologia: Documento in Post-print
Dimensione 1.55 MB
Formato Adobe PDF
1.55 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1046885
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
social impact