BACKGROUND. Cardiac xenograft function is lost due to delayed xenograft rejection (DXR) characterized by microvascular thrombosis and myocardial necrosis. The cause of DXR is unknown but may result from thrombosis induced by antibody-mediated activation of endothelial cells and/or by incompatibilities in thromboregulatory interactions. METHODS. To examine these issues, a series (Groups 1-6) of previous transgenic CD46 pig-to-baboon heterotopic cardiac transplants were reanalyzed for baseline immunosuppressive levels, graft survival and infectious complications with and without systemic anticoagulation. Groups 1-4 received low dose tacrolimus and sirolimus maintenance therapy, with splenectomy, anti-CD20 and daily α-Gal polymer. Group 1 recipients received no anticoagulation. Groups 2-4 were anticoagulated with aspirin and Plavix, Lovenox, or Coumadin, respectively. Group 5 was treated with Lovenox and high dose tacrolimus and sirolimus maintenance therapy. Group 6 recipients received no postoperative anticoagulation but the same immunosuppression as group 5. RESULTS. Median survival (15-22 days) within groups 1-4 was not significantly different. At rejection all tissues exhibited microvascular thrombosis, coagulative necrosis and similar levels of platelet and fibrin deposition. Groups 5 and 6 median survival (76 days) was significantly increased compared to groups 1-4. There was no significant difference in median survival between Lovenox treated recipients (68 days) and anticoagulant free recipients (96 days). Rejected tissues showed vascular antibody deposition, microvascular thrombosis, and myocyte necrosis. CONCLUSION. Significant prolongation in xenograft survival is achieved by improved immunosuppression. These results suggest that ongoing immune responses remain the major stimulus for DXR. © 2006 Lippincott Williams & Wilkins, Inc.

Increased immunosuppression, not anticoagulation, extends cardiac xenograft survival

Ricci D.;
2006-01-01

Abstract

BACKGROUND. Cardiac xenograft function is lost due to delayed xenograft rejection (DXR) characterized by microvascular thrombosis and myocardial necrosis. The cause of DXR is unknown but may result from thrombosis induced by antibody-mediated activation of endothelial cells and/or by incompatibilities in thromboregulatory interactions. METHODS. To examine these issues, a series (Groups 1-6) of previous transgenic CD46 pig-to-baboon heterotopic cardiac transplants were reanalyzed for baseline immunosuppressive levels, graft survival and infectious complications with and without systemic anticoagulation. Groups 1-4 received low dose tacrolimus and sirolimus maintenance therapy, with splenectomy, anti-CD20 and daily α-Gal polymer. Group 1 recipients received no anticoagulation. Groups 2-4 were anticoagulated with aspirin and Plavix, Lovenox, or Coumadin, respectively. Group 5 was treated with Lovenox and high dose tacrolimus and sirolimus maintenance therapy. Group 6 recipients received no postoperative anticoagulation but the same immunosuppression as group 5. RESULTS. Median survival (15-22 days) within groups 1-4 was not significantly different. At rejection all tissues exhibited microvascular thrombosis, coagulative necrosis and similar levels of platelet and fibrin deposition. Groups 5 and 6 median survival (76 days) was significantly increased compared to groups 1-4. There was no significant difference in median survival between Lovenox treated recipients (68 days) and anticoagulant free recipients (96 days). Rejected tissues showed vascular antibody deposition, microvascular thrombosis, and myocyte necrosis. CONCLUSION. Significant prolongation in xenograft survival is achieved by improved immunosuppression. These results suggest that ongoing immune responses remain the major stimulus for DXR. © 2006 Lippincott Williams & Wilkins, Inc.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1046564
Citazioni
  • ???jsp.display-item.citation.pmc??? 28
  • Scopus 57
  • ???jsp.display-item.citation.isi??? 56
social impact