Safeguarding the environment is one of the most serious modern challenges, as increasing amounts of chemical compounds are produced and released into the environment, causing a serious threat to the future health of the Earth as well as organisms and humans on a global scale. Ecotoxicology is an integrative science involving different physical, chemical, biological, and social aspects concerned with the study of toxic effects caused by natural or synthetic pollutants on any constituents of ecosystems, including animals (including humans), plants, or microorganisms, in an integral context. In recent decades, this science has undergone considerable development by addressing environmental risk assessments through the biomonitoring of indicator species using biomarkers, model organisms, and nanocompounds in toxicological assays. Since a single taxon cannot be representative of complex ecotoxicological effects and mechanisms of action of a chemical, the use of test batteries is widely accepted in ecotoxicology. Test batteries include properly chosen organisms that are easy to breed, adapt easily to laboratory conditions, and are representative of the environmental compartment under consideration. One of the main issues of toxicological and ecotoxicological research is to gain a deeper understanding of how data should be obtained through laboratory and field approaches using experimental models and how they could be extrapolated to humans. There is a tendency to replace animal tests with in vitro systems and to perform them according to standardized analytical methods and the rules of the so-called good laboratory practice(GLP). This paper aims to review this topic to stimulate both efforts to understand the toxicological and ecotoxicological properties of natural and synthetic chemicals and the possible use of such data for application to humans.

Role of model organisms and nanocompounds in human health risk assessment

Converti, Attilio;Mariottini, Gian Luigi
2021-01-01

Abstract

Safeguarding the environment is one of the most serious modern challenges, as increasing amounts of chemical compounds are produced and released into the environment, causing a serious threat to the future health of the Earth as well as organisms and humans on a global scale. Ecotoxicology is an integrative science involving different physical, chemical, biological, and social aspects concerned with the study of toxic effects caused by natural or synthetic pollutants on any constituents of ecosystems, including animals (including humans), plants, or microorganisms, in an integral context. In recent decades, this science has undergone considerable development by addressing environmental risk assessments through the biomonitoring of indicator species using biomarkers, model organisms, and nanocompounds in toxicological assays. Since a single taxon cannot be representative of complex ecotoxicological effects and mechanisms of action of a chemical, the use of test batteries is widely accepted in ecotoxicology. Test batteries include properly chosen organisms that are easy to breed, adapt easily to laboratory conditions, and are representative of the environmental compartment under consideration. One of the main issues of toxicological and ecotoxicological research is to gain a deeper understanding of how data should be obtained through laboratory and field approaches using experimental models and how they could be extrapolated to humans. There is a tendency to replace animal tests with in vitro systems and to perform them according to standardized analytical methods and the rules of the so-called good laboratory practice(GLP). This paper aims to review this topic to stimulate both efforts to understand the toxicological and ecotoxicological properties of natural and synthetic chemicals and the possible use of such data for application to humans.
File in questo prodotto:
File Dimensione Formato  
A371.pdf

accesso chiuso

Descrizione: Articolo su rivista
Tipologia: Documento in versione editoriale
Dimensione 948.47 kB
Formato Adobe PDF
948.47 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1046505
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 2
social impact