ALDFGs (abandoned, lost or otherwise discharged fishing gears) represent a major pollutant in the world’s oceans, including the Mediterranean Sea, but very little is known about their long-term fate in the underwater environment. Here we investigate the destiny of ALDFGs in a coralligenous benthic community by studying the biofouling growing on them at 30 m depth over a three-year period. Results indicate that ALDFGs are quickly covered by biofouling, reaching maximum values of cover in one year. At this depth, the biofouling community results highly influenced by light-dependent seasonal cycles and a general four-steps colonization scheme is tentatively depicted: i) biofouling community is initially dominated by fast-growing organisms, with algae and hydrozoans settling after two weeks; ii) smallsized carbonatic organisms (e.g. bryozoans) appear after two months; iii) the same organisms (including coralline algae) become abundant after five to eight months; iv) conspicuous carbonatic skeletons (serpulids, bivalves and bryozoans) occur after one year increasing in complexity in the following months. The biofouling settled on ALDFGs, as well as growth rates of large carbonatic species, could provide useful information to estimate the age of lost lines and nets in retrieved material and in situ photo footage complementing the overview of the fishing impact in this specific environment. Finally, no signs of nylon degradation are reported, suggesting that the prevailing physical conditions and the biofouling cover extent could alter microplastics release from nylon ALDFGs.

Fate of lost fishing gears: Experimental evidence of biofouling colonization patterns from the northwestern Mediterranean Sea.

Enrichetti F.;Bavestrello G.;Betti F.;Tregrosso A.;Bo M
2021-01-01

Abstract

ALDFGs (abandoned, lost or otherwise discharged fishing gears) represent a major pollutant in the world’s oceans, including the Mediterranean Sea, but very little is known about their long-term fate in the underwater environment. Here we investigate the destiny of ALDFGs in a coralligenous benthic community by studying the biofouling growing on them at 30 m depth over a three-year period. Results indicate that ALDFGs are quickly covered by biofouling, reaching maximum values of cover in one year. At this depth, the biofouling community results highly influenced by light-dependent seasonal cycles and a general four-steps colonization scheme is tentatively depicted: i) biofouling community is initially dominated by fast-growing organisms, with algae and hydrozoans settling after two weeks; ii) smallsized carbonatic organisms (e.g. bryozoans) appear after two months; iii) the same organisms (including coralline algae) become abundant after five to eight months; iv) conspicuous carbonatic skeletons (serpulids, bivalves and bryozoans) occur after one year increasing in complexity in the following months. The biofouling settled on ALDFGs, as well as growth rates of large carbonatic species, could provide useful information to estimate the age of lost lines and nets in retrieved material and in situ photo footage complementing the overview of the fishing impact in this specific environment. Finally, no signs of nylon degradation are reported, suggesting that the prevailing physical conditions and the biofouling cover extent could alter microplastics release from nylon ALDFGs.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1038797
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 22
social impact