We prove the Kobayashi--Hitchin correspondence and the approximate Kobayashi--Hitchin correspondence for twisted holomorphic vector bundles on compact Kähler manifolds. More precisely, if X is a compact manifold and g is a Gauduchon metric on X, a twisted holomorphic vector bundle on X is g−polystable if and only if it is g−Hermite-Einstein, and if X is a compact Kähler manifold and g is a Kähler metric on X, then a twisted holomorphic vector bundle on X is g−semistable if and only if it is approximate g−Hermite-Einstein.

Kobayashi--Hitchin correspondence for twisted vector bundles

Arvid Perego
2021-01-01

Abstract

We prove the Kobayashi--Hitchin correspondence and the approximate Kobayashi--Hitchin correspondence for twisted holomorphic vector bundles on compact Kähler manifolds. More precisely, if X is a compact manifold and g is a Gauduchon metric on X, a twisted holomorphic vector bundle on X is g−polystable if and only if it is g−Hermite-Einstein, and if X is a compact Kähler manifold and g is a Kähler metric on X, then a twisted holomorphic vector bundle on X is g−semistable if and only if it is approximate g−Hermite-Einstein.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1038747
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact