After a brief review on the applications of twisted spectral triples to physics, we adapt to the twisted case the notion of real part of a spectral triple. In particular, when one twists a usual spectral triple by its grading, we show that – depending on the KO dimension – the real part is either twisted as well, or is the intersection of the initial algebra with its opposite. We illustrate this result with the spectral triple of the standard model.
Real part of twisted-by-grading spectral triples
Filaci M.;Martinetti P.
2020-01-01
Abstract
After a brief review on the applications of twisted spectral triples to physics, we adapt to the twisted case the notion of real part of a spectral triple. In particular, when one twists a usual spectral triple by its grading, we show that – depending on the KO dimension – the real part is either twisted as well, or is the intersection of the initial algebra with its opposite. We illustrate this result with the spectral triple of the standard model.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.