The interplay of bio-aerosol dispersion and impact, meteorology, air quality is gaining increasing interest in the wide spectrum of atmospheric science. Experiments conducted inside confined artificial environments, such as the Atmospheric Simulations Chambers (ASCs), where atmospheric conditions and composition are controlled, can provide 10 valuable information on bio-aerosol viability, dispersion, and impact. We focus here on the reproducible aerosolization and injection of viable microorganisms into an ASC, the first and crucial step of any experimental protocol to expose bio-aerosol at different atmospheric conditions. We compare the performance of three nebulizers specifically designed for bioaerosol applications: the Collison nebulizer, the Blaustein Atomizing Modules (BLAM) and the Sparging Liquid Aerosol Generator (SLAG), all manufactured and commercialized by CH TECHNOLOGIES. The comparison refers to operating conditions and 15 the concentration of viable bacteria at the nebulizer outlet, with the final goal to measure the reproducibility of the nebulization procedure and assess the application in experiments at ASCs. A typical bacterial test model, Escherichia coli (ATCC® 25922™), was selected for such characterization. Bacteria suspensions, with a concentration around 108 CFU ml-1, were first aerosolized at different air pressures and collected by a Liquid Impinger, to obtain a correlation curve between airflow and nebulized bacteria, for each generator. Afterwards, bacteria were aerosolized inside the atmospheric simulation chamber 20 ChAMBRe (Chamber for Aerosol Modelling and Bio-aerosol Research) to measure the reproducibility of the whole procedure. An overall reproducibility of 11% was obtained with each nebulizer through a set of baseline experiments.

Comparative characterization of bio-aerosol nebulizers in connection to atmospheric simulation chambers

Silvia G. Danelli;Marco Brunoldi;Dario Massabò;Virginia Vernocchi;Paolo Prati
2021-01-01

Abstract

The interplay of bio-aerosol dispersion and impact, meteorology, air quality is gaining increasing interest in the wide spectrum of atmospheric science. Experiments conducted inside confined artificial environments, such as the Atmospheric Simulations Chambers (ASCs), where atmospheric conditions and composition are controlled, can provide 10 valuable information on bio-aerosol viability, dispersion, and impact. We focus here on the reproducible aerosolization and injection of viable microorganisms into an ASC, the first and crucial step of any experimental protocol to expose bio-aerosol at different atmospheric conditions. We compare the performance of three nebulizers specifically designed for bioaerosol applications: the Collison nebulizer, the Blaustein Atomizing Modules (BLAM) and the Sparging Liquid Aerosol Generator (SLAG), all manufactured and commercialized by CH TECHNOLOGIES. The comparison refers to operating conditions and 15 the concentration of viable bacteria at the nebulizer outlet, with the final goal to measure the reproducibility of the nebulization procedure and assess the application in experiments at ASCs. A typical bacterial test model, Escherichia coli (ATCC® 25922™), was selected for such characterization. Bacteria suspensions, with a concentration around 108 CFU ml-1, were first aerosolized at different air pressures and collected by a Liquid Impinger, to obtain a correlation curve between airflow and nebulized bacteria, for each generator. Afterwards, bacteria were aerosolized inside the atmospheric simulation chamber 20 ChAMBRe (Chamber for Aerosol Modelling and Bio-aerosol Research) to measure the reproducibility of the whole procedure. An overall reproducibility of 11% was obtained with each nebulizer through a set of baseline experiments.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1035478
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 14
social impact