We define two related invariants for a d-dimensional local ring (R,,k) called syzygy and differential symmetric signature by looking at the maximal free splitting of reflexive symmetric powers of two modules: the top-dimensional syzygy module SyzdR(k) of the residue field and the module of Kähler differentials ΩR/k of R over k. We compute these invariants for two-dimensional ADE singularities obtaining 1/|G|, where |G| is the order of the acting group, and for cones over elliptic curves obtaining 0 for the differential symmetric signature. These values coincide with the F-signature of such rings in positive characteristic.

The symmetric signature

Caminata A.
2017

Abstract

We define two related invariants for a d-dimensional local ring (R,,k) called syzygy and differential symmetric signature by looking at the maximal free splitting of reflexive symmetric powers of two modules: the top-dimensional syzygy module SyzdR(k) of the residue field and the module of Kähler differentials ΩR/k of R over k. We compute these invariants for two-dimensional ADE singularities obtaining 1/|G|, where |G| is the order of the acting group, and for cones over elliptic curves obtaining 0 for the differential symmetric signature. These values coincide with the F-signature of such rings in positive characteristic.
File in questo prodotto:
File Dimensione Formato  
3) The symmetric signature [Communications in Algebra].pdf

accesso chiuso

Tipologia: Documento in versione editoriale
Dimensione 592.6 kB
Formato Adobe PDF
592.6 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11567/1030779
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact