Let M be a (2 x n) non-generic matrix of linear forms in a polynomial ring. For large classes of such matrices, we compute the cohomological dimension (cd) and the arithmetical rank (ara) of the ideal I-2 (M) generated by the 2-minors of M. Over an algebraically closed field, any (2 x n) -matrix of linear forms can be written in the Kronecker-Weierstrass normal form, as a concatenation of scroll, Jordan and nilpotent blocks. B. adescu and Valla computed ara (I-2 (M)) when M is a concatenation of scroll blocks. In this case we compute cd (I-2 (M)) and extend these results to concatenations of Jordan blocks. Eventually we compute ara (I-2 (M)) and cd (I-2 (M)) in an interesting mixed case, when M contains both Jordan and scroll blocks. In all cases we show that ara (I-2 (M)) is less than the arithmetical rank of the determinantal ideal of a generic matrix.

Cohomological dimension and arithmetical rank of some determinantal ideals

Bolognini, D;Caminata, A;
2015

Abstract

Let M be a (2 x n) non-generic matrix of linear forms in a polynomial ring. For large classes of such matrices, we compute the cohomological dimension (cd) and the arithmetical rank (ara) of the ideal I-2 (M) generated by the 2-minors of M. Over an algebraically closed field, any (2 x n) -matrix of linear forms can be written in the Kronecker-Weierstrass normal form, as a concatenation of scroll, Jordan and nilpotent blocks. B. adescu and Valla computed ara (I-2 (M)) when M is a concatenation of scroll blocks. In this case we compute cd (I-2 (M)) and extend these results to concatenations of Jordan blocks. Eventually we compute ara (I-2 (M)) and cd (I-2 (M)) in an interesting mixed case, when M contains both Jordan and scroll blocks. In all cases we show that ara (I-2 (M)) is less than the arithmetical rank of the determinantal ideal of a generic matrix.
File in questo prodotto:
File Dimensione Formato  
1) Cohomological dimension and arithmetical rank of some determinantal ideals [Le Matematiche].pdf

accesso aperto

Tipologia: Documento in versione editoriale
Dimensione 212.66 kB
Formato Adobe PDF
212.66 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11567/1030763
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 2
social impact