Polyphenols, with anti-oxidant properties, counteract oxidative stress effects. Increasing evidence has found oxidative stressto be the main risk factor for trabecular meshwork (TM) damage, leading to high-tension glaucoma. Topical anti-oxidants could represent a new target for glaucoma treatment. Our aim is to investigate the protective mechanisms on a human TM culture of a patented polyphenol and fatty acid (iTRAB®)formulation in response to oxidative stress using an advanced invitromodel consisting of 3D-human TM cells, embedded in a natural hydrogel, and a milli-scaled multi-organ device model for constantdynamic conditions. The 3D-human TM cells(3D-HTMCs) were treated daily with 500 µM H2O2or 500 µM H2O2and 0.15% iTRAB®(m/v) for 72 h, and molecular differences in the intracellular reactive oxygen species (iROS), state of the cells, activation of the apoptosis pathway and NF-kB and the expression ofinflammatory and fibrotic markers wereanalyzed at different time-points.Concomitant exposure significantly reduced iROS and restored TM viability, iTRAB® having a significant inhibitory effect on the apoptotic pathway, activation of NF-κB, induction of pro-inflammatory (IL-1α, IL-1ß and TNFα) and pro-fibrotic (TGFβ) cytokines and the matrix metalloproteinase expressions. It is clear that this specific anti-oxidant provides a valid TM protection, suggesting iTRAB® could be an adjuvant therapy in primary open-angle glaucoma (POAG).

Can Polyphenols in Eye Drops Be Useful for Trabecular Protection from Oxidative Damage?

Izzotti, A.;Vernazza, S.;Tirendi, S.;Scarfì, S.;Bassi, A. M.
2020-01-01

Abstract

Polyphenols, with anti-oxidant properties, counteract oxidative stress effects. Increasing evidence has found oxidative stressto be the main risk factor for trabecular meshwork (TM) damage, leading to high-tension glaucoma. Topical anti-oxidants could represent a new target for glaucoma treatment. Our aim is to investigate the protective mechanisms on a human TM culture of a patented polyphenol and fatty acid (iTRAB®)formulation in response to oxidative stress using an advanced invitromodel consisting of 3D-human TM cells, embedded in a natural hydrogel, and a milli-scaled multi-organ device model for constantdynamic conditions. The 3D-human TM cells(3D-HTMCs) were treated daily with 500 µM H2O2or 500 µM H2O2and 0.15% iTRAB®(m/v) for 72 h, and molecular differences in the intracellular reactive oxygen species (iROS), state of the cells, activation of the apoptosis pathway and NF-kB and the expression ofinflammatory and fibrotic markers wereanalyzed at different time-points.Concomitant exposure significantly reduced iROS and restored TM viability, iTRAB® having a significant inhibitory effect on the apoptotic pathway, activation of NF-κB, induction of pro-inflammatory (IL-1α, IL-1ß and TNFα) and pro-fibrotic (TGFβ) cytokines and the matrix metalloproteinase expressions. It is clear that this specific anti-oxidant provides a valid TM protection, suggesting iTRAB® could be an adjuvant therapy in primary open-angle glaucoma (POAG).
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1029921
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact