The angle-based repetitive controller (RC) has been applied successfully in the literature for torque ripple suppression in variable speed permanent magnet synchronous machines (PMSMs). The RC is preferred because of its learning capability, which allows the cancelation of all periodic ripples from multiple sources. However, its tuning method has not yet been proposed. Since the structure of the RC is found similar to the disturbance observer (DOB), which is convenient to tune through pole placement, this paper merges the angle-based RC and DOB into a novel angle-based repetitive observer (ARO) for the first time for the torque ripple reduction in PMSMs. ARO takes advantages of its DOB structure that it can be designed separately and can easily be added into an existing control loop. Taking advantage of its RC nature, ARO can tackle a wide frequency range of torque ripple even in the presence of measurement noise. The experimental test results have confirmed the robust performance of ARO under five conditions, including the ideal integral delay, the fractional delay, the load transient, the speed transient, and the detuned mechanical parameters conditions. The execution time of the ARO is less than 10$,mu$s.
Torque Ripple Reduction of PMSMs Using a Novel Angle-Based Repetitive Observer
Formentini A.;
2020-01-01
Abstract
The angle-based repetitive controller (RC) has been applied successfully in the literature for torque ripple suppression in variable speed permanent magnet synchronous machines (PMSMs). The RC is preferred because of its learning capability, which allows the cancelation of all periodic ripples from multiple sources. However, its tuning method has not yet been proposed. Since the structure of the RC is found similar to the disturbance observer (DOB), which is convenient to tune through pole placement, this paper merges the angle-based RC and DOB into a novel angle-based repetitive observer (ARO) for the first time for the torque ripple reduction in PMSMs. ARO takes advantages of its DOB structure that it can be designed separately and can easily be added into an existing control loop. Taking advantage of its RC nature, ARO can tackle a wide frequency range of torque ripple even in the presence of measurement noise. The experimental test results have confirmed the robust performance of ARO under five conditions, including the ideal integral delay, the fractional delay, the load transient, the speed transient, and the detuned mechanical parameters conditions. The execution time of the ARO is less than 10$,mu$s.File | Dimensione | Formato | |
---|---|---|---|
08701614.pdf
accesso aperto
Descrizione: Articolo su rivista
Tipologia:
Documento in versione editoriale
Dimensione
5.42 MB
Formato
Adobe PDF
|
5.42 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.