Processes involving heavy quarks are a crucial component of the LHC physics program, both by themselves and as backgrounds for Higgs physics and new physics searches. In this work, we critically reconsider the validity of the widely-adopted approximation in which heavy quarks are generated at the matrix-element level, with special emphasis on the impact of the collinear logarithms associated with final-state heavy quark and gluon splittings. Our study, based on a perturbative fragmentation-function approach, explicitly shows that neglecting the resummation of collinear logarithms may yield inaccurate predictions, in particular when observables exclusive in the heavy quark degrees of freedom are considered. Our findings motivate the use of schemes which encompass the resummation of final-state collinear logarithms.

A fragmentation-based study of heavy quark production

Ridolfi G.;
2020-01-01

Abstract

Processes involving heavy quarks are a crucial component of the LHC physics program, both by themselves and as backgrounds for Higgs physics and new physics searches. In this work, we critically reconsider the validity of the widely-adopted approximation in which heavy quarks are generated at the matrix-element level, with special emphasis on the impact of the collinear logarithms associated with final-state heavy quark and gluon splittings. Our study, based on a perturbative fragmentation-function approach, explicitly shows that neglecting the resummation of collinear logarithms may yield inaccurate predictions, in particular when observables exclusive in the heavy quark degrees of freedom are considered. Our findings motivate the use of schemes which encompass the resummation of final-state collinear logarithms.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1028845
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 12
social impact