Calculation of the eigenvectors of two- and three-dimensional coherency matrices, and the four-dimensional coherency matrix associated with a Mueller matrix, is considered, especially for algebraic cases, in the light of recently published algorithms. The preferred approach is based on a combination of an evaluation of the characteristic polynomial and an adjugate matrix. The diagonal terms of the coherency matrix are given in terms of the characteristic polynomial of reduced matrices as functions of the eigenvalues of the coherency matrix. The analogous polynomial form for the off-diagonal elements of the coherency matrix is also presented. Simple expressions are given for the pure component in the characteristic decomposition.
Eigenvectors of polarization coherency matrices
Bendandi A.;Diaspro A.
2020-01-01
Abstract
Calculation of the eigenvectors of two- and three-dimensional coherency matrices, and the four-dimensional coherency matrix associated with a Mueller matrix, is considered, especially for algebraic cases, in the light of recently published algorithms. The preferred approach is based on a combination of an evaluation of the characteristic polynomial and an adjugate matrix. The diagonal terms of the coherency matrix are given in terms of the characteristic polynomial of reduced matrices as functions of the eigenvalues of the coherency matrix. The analogous polynomial form for the off-diagonal elements of the coherency matrix is also presented. Simple expressions are given for the pure component in the characteristic decomposition.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.