Multiple sclerosis is a chronic inflammatory demyelinating disorder of the central nervous system that eventually leads to progressive neurodegeneration and disability. Recent findings highlighted the emerging role of each target of the endocannabinoid system in controlling the symptoms and disease progression of multiple sclerosis. Therefore, multi-target modulators of the endocannabinoid system could provide a more effective pharmacological strategy as compared to the single target modulation. In this work, N-cycloheptyl-1,2-dihydro-5-bromo-1-(4-fluorobenzyl)-6-methyl-2-oxo-pyridine-3-carboxamide (B2) was identified as the most promising compound with dual agonism at cannabinoid receptors type-1 and cannabinoid receptors type-2 and good drug-like properties. In in vitro assays, B2 reduced glutamate release from rat synaptosomes through interaction with cannabinoid receptors type-1 and modulated the production of the pro- and anti-inflammatory cytokines (interleukins IL-1β and IL-6 and interleukin IL-10 respectively) via cannabinoid receptors type-2 activation. Furthermore, B2 demonstrated antinociceptive effects in an animal model of neuropathic pain and efficacy in an experimental autoimmune encephalomyelitis model of multiple sclerosis.
The endocannabinoid system dual-target ligand N-cycloheptyl-1,2-dihydro-5-bromo-1-(4-fluorobenzyl)-6-methyl-2-oxo-pyridine-3-carboxamide improves disease severity in a mouse model of multiple sclerosis
Chiara Cervetto;Manuela Marcoli;
2020-01-01
Abstract
Multiple sclerosis is a chronic inflammatory demyelinating disorder of the central nervous system that eventually leads to progressive neurodegeneration and disability. Recent findings highlighted the emerging role of each target of the endocannabinoid system in controlling the symptoms and disease progression of multiple sclerosis. Therefore, multi-target modulators of the endocannabinoid system could provide a more effective pharmacological strategy as compared to the single target modulation. In this work, N-cycloheptyl-1,2-dihydro-5-bromo-1-(4-fluorobenzyl)-6-methyl-2-oxo-pyridine-3-carboxamide (B2) was identified as the most promising compound with dual agonism at cannabinoid receptors type-1 and cannabinoid receptors type-2 and good drug-like properties. In in vitro assays, B2 reduced glutamate release from rat synaptosomes through interaction with cannabinoid receptors type-1 and modulated the production of the pro- and anti-inflammatory cytokines (interleukins IL-1β and IL-6 and interleukin IL-10 respectively) via cannabinoid receptors type-2 activation. Furthermore, B2 demonstrated antinociceptive effects in an animal model of neuropathic pain and efficacy in an experimental autoimmune encephalomyelitis model of multiple sclerosis.File | Dimensione | Formato | |
---|---|---|---|
Arena et al 2020 preprint.pdf
accesso aperto
Tipologia:
Altro materiale allegato
Dimensione
1.94 MB
Formato
Adobe PDF
|
1.94 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.