Solid oxide fuel cells (SOFCs) are a well-developed technology, mainly used for combined heat and power production. High operating temperatures and anodic Ni-based materials allow for direct reforming reactions of CH4 and other light hydrocarbons inside the cell. This feature favors a wider use of SOFCs that otherwise would be limited by the absence of a proper H2 distribution network. This also permits the simplification of plant design avoiding additional units for upstream syngas production. In this context, control and knowledge of how variables such as temperature and gas composition are distributed on the cell surface are important to ensure good long-lasting performance. The aim of this work is to present a 2D modeling tool able to simulate SOFC performance working with direct internal CH4 reforming. Initially thermodynamic and kinetic approaches are compared in order to tune the model assuming a biogas as feed. Thanks to the introduction of a matrix of coefficients to represent the local distribution of reforming active sites, the model considers degradation/poisoning phenomena. The same approach is also used to identify an optimized catalyst distribution that allows reducing critical working conditions in terms of temperature gradient, thus facilitating long-term applications.

2D simulation for CH4internal reforming-SOFCs: An approach to study performance degradation and optimization

Audasso E.;Bianchi F. R.;Bosio B.
2020

Abstract

Solid oxide fuel cells (SOFCs) are a well-developed technology, mainly used for combined heat and power production. High operating temperatures and anodic Ni-based materials allow for direct reforming reactions of CH4 and other light hydrocarbons inside the cell. This feature favors a wider use of SOFCs that otherwise would be limited by the absence of a proper H2 distribution network. This also permits the simplification of plant design avoiding additional units for upstream syngas production. In this context, control and knowledge of how variables such as temperature and gas composition are distributed on the cell surface are important to ensure good long-lasting performance. The aim of this work is to present a 2D modeling tool able to simulate SOFC performance working with direct internal CH4 reforming. Initially thermodynamic and kinetic approaches are compared in order to tune the model assuming a biogas as feed. Thanks to the introduction of a matrix of coefficients to represent the local distribution of reforming active sites, the model considers degradation/poisoning phenomena. The same approach is also used to identify an optimized catalyst distribution that allows reducing critical working conditions in terms of temperature gradient, thus facilitating long-term applications.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11567/1025817
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact