The aim of this study was to compare the micro-morphological features of two different non-drug Cannabis sativa L. biotypes (Chinese accession G-309 and one fibrante variety) and to evaluate the phytochemical profile as well as some biological properties of the essential oils (EOs) obtained by hydrodistillation of dried flowering tops. After a micro-morphological evaluation by scanning electron microscopy, the phytochemical composition was analysed by GC–FID and GC–MS analyses. Antioxidant and anti-acetylcholinesterase properties were investigated by several in vitro cell-free assays, while neuroactive effects were evaluated on mouse cortical neuronal as well as human iPS cell-derived central nervous system cells grown on MEA chips. Both EOs showed strong antioxidant properties mainly attributable to the high content of hydroxylated compounds as well as significant anti-acetylcholinesterase activities (IC50 74.64 and 57.31 μg/ml for Chinese accession and fibrante variety, respectively). Furthermore, they showed a concentration-dependent inhibition of spontaneous electrical activity of human and mouse neuronal networks, with the fibrante variety, which showed the best activity (MFR, IC50 0.71 and 10.60 μg/ml, respectively). The observed biological activities could be due to a synergic effect between terpenes and phytocannabinoids, although in vivo studies, which clarify the molecular mechanism, are still lacking.

Promising in vitro antioxidant, anti-acetylcholinesterase and neuroactive effects of essential oil from two non-psychotropic Cannabis sativa L. biotypes

Cornara L.;Garbati P.;
2020-01-01

Abstract

The aim of this study was to compare the micro-morphological features of two different non-drug Cannabis sativa L. biotypes (Chinese accession G-309 and one fibrante variety) and to evaluate the phytochemical profile as well as some biological properties of the essential oils (EOs) obtained by hydrodistillation of dried flowering tops. After a micro-morphological evaluation by scanning electron microscopy, the phytochemical composition was analysed by GC–FID and GC–MS analyses. Antioxidant and anti-acetylcholinesterase properties were investigated by several in vitro cell-free assays, while neuroactive effects were evaluated on mouse cortical neuronal as well as human iPS cell-derived central nervous system cells grown on MEA chips. Both EOs showed strong antioxidant properties mainly attributable to the high content of hydroxylated compounds as well as significant anti-acetylcholinesterase activities (IC50 74.64 and 57.31 μg/ml for Chinese accession and fibrante variety, respectively). Furthermore, they showed a concentration-dependent inhibition of spontaneous electrical activity of human and mouse neuronal networks, with the fibrante variety, which showed the best activity (MFR, IC50 0.71 and 10.60 μg/ml, respectively). The observed biological activities could be due to a synergic effect between terpenes and phytocannabinoids, although in vivo studies, which clarify the molecular mechanism, are still lacking.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1022736
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 11
social impact