Let F(x, a) be a real polynomial in two sets of variables, x and a, that is linear with respect to one of the variable sets, say a. In this paper, we deal with two of the main steps of the Hough transform framework for the pattern recognition technique to detect loci in images. More precisely, we present an algorithmic process, based on the Moore–Penrose pseudo-inverse, to provide a region of analysis in the parameter space. In addition, we state an upper bound for the sampling distance of the discretization of the parameter space region.

Moore–Penrose approach in the Hough transform framework

Beltrametti M. C.;Torrente M.
2020-01-01

Abstract

Let F(x, a) be a real polynomial in two sets of variables, x and a, that is linear with respect to one of the variable sets, say a. In this paper, we deal with two of the main steps of the Hough transform framework for the pattern recognition technique to detect loci in images. More precisely, we present an algorithmic process, based on the Moore–Penrose pseudo-inverse, to provide a region of analysis in the parameter space. In addition, we state an upper bound for the sampling distance of the discretization of the parameter space region.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1021567
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 11
social impact