Epidemiological studies provide evidence that physical activity reduces the risk of cancer, particularly of breast cancer. However, little is known about the underlying molecular mechanisms as related to microRNAs. The goal of the herein presented study is to explore the involvement of miRNAs in beneficial effects exerted by physical activity in breast cancer prevention. Thirty subjects (mean age: 57.1 ± 14.7 years) underwent 45 minutes of treadmill walking under standardized conditions. The levels of extracellular miRNAs were evaluated in blood plasma before and after structured exercise by means of microarray analysis of 1,900 miRNAs identifying mostly modulated miRNAs. Structured exercise has been found to modulate the expression of 14 miRNAs involved in pathways relevant to cancer. The different expression of two miRNAs involved in breast cancer progression, i. e. up-regulation of miR-206 and down-regulation of anti-miR-30c, were the most striking effects induced by exercise. The biological effects of these miRNAs were investigated in MCF-7 human breast cancer cells. miR-206 transfection and anti-miR-30c silencing, inhibited cell growth and increased apoptosis of MCF-7 cells. Moreover, the combined use of the two miRNAs further enhanced apoptosis and induced growth arrest in the G1/S phase of cell cycle. Our results support that physical activity effectively change the expression of extracellular miRNAs. Specifically, miR-206 up-regulation and anti-miR-30c downregulation act as suppressors in breast cancer cells. The evaluation of these miRNAs in blood can be used as non-invasive biomarkers for breast cancer prevention.

Anticancer effect of physical activity is mediated by modulation of extracellular microRNA in blood

Pulliero A.;Marengo B.;Domenicotti C.;Molfetta L.;Izzotti A.
2020-01-01

Abstract

Epidemiological studies provide evidence that physical activity reduces the risk of cancer, particularly of breast cancer. However, little is known about the underlying molecular mechanisms as related to microRNAs. The goal of the herein presented study is to explore the involvement of miRNAs in beneficial effects exerted by physical activity in breast cancer prevention. Thirty subjects (mean age: 57.1 ± 14.7 years) underwent 45 minutes of treadmill walking under standardized conditions. The levels of extracellular miRNAs were evaluated in blood plasma before and after structured exercise by means of microarray analysis of 1,900 miRNAs identifying mostly modulated miRNAs. Structured exercise has been found to modulate the expression of 14 miRNAs involved in pathways relevant to cancer. The different expression of two miRNAs involved in breast cancer progression, i. e. up-regulation of miR-206 and down-regulation of anti-miR-30c, were the most striking effects induced by exercise. The biological effects of these miRNAs were investigated in MCF-7 human breast cancer cells. miR-206 transfection and anti-miR-30c silencing, inhibited cell growth and increased apoptosis of MCF-7 cells. Moreover, the combined use of the two miRNAs further enhanced apoptosis and induced growth arrest in the G1/S phase of cell cycle. Our results support that physical activity effectively change the expression of extracellular miRNAs. Specifically, miR-206 up-regulation and anti-miR-30c downregulation act as suppressors in breast cancer cells. The evaluation of these miRNAs in blood can be used as non-invasive biomarkers for breast cancer prevention.
File in questo prodotto:
File Dimensione Formato  
A167_miRNA Phys Act Breast K_Oncotarget_2020.pdf

accesso aperto

Tipologia: Documento in Pre-print
Dimensione 2.37 MB
Formato Adobe PDF
2.37 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1021305
Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 11
  • ???jsp.display-item.citation.isi??? ND
social impact