This paper describes the basic ideas behind a novel prediction error parameter identification algorithm exhibiting high robustness with respect to outlying data. Given the low sensitivity to outliers, these can be more easily identified by analysing the residuals of the fit. The devised cost function is inspired by the definition of entropy, although the method in itself does not exploit the stochastic meaning of entropy in its usual sense. After describing the most common alternative approaches for robust identification, the novel method is presented together with numerical examples for validation.
An Entropy-Like Estimator for Robust Parameter Identification
Giovanni Indiveri
2009-01-01
Abstract
This paper describes the basic ideas behind a novel prediction error parameter identification algorithm exhibiting high robustness with respect to outlying data. Given the low sensitivity to outliers, these can be more easily identified by analysing the residuals of the fit. The devised cost function is inspired by the definition of entropy, although the method in itself does not exploit the stochastic meaning of entropy in its usual sense. After describing the most common alternative approaches for robust identification, the novel method is presented together with numerical examples for validation.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.