It is observed that the shifted Poisson structure (antibracket) on the solution complex of Klein–Gordon and linear Yang–Mills theory on globally hyperbolic Lorentzian manifolds admits retarded/advanced trivializations (analogs of retarded/advanced Green’s operators). Quantization of the associated unshifted Poisson structure determines a unique (up to equivalence) homotopy algebraic quantum field theory (AQFT), i.e. a functor that assigns differential graded ∗ -algebras of observables and fulfills homotopical analogs of the AQFT axioms. For Klein–Gordon theory the construction is equivalent to the standard one, while for linear Yang–Mills it is richer and reproduces the BRST/BV field content (gauge fields, ghosts and antifields).
Linear Yang–Mills Theory as a Homotopy AQFT
Benini M.;
2020-01-01
Abstract
It is observed that the shifted Poisson structure (antibracket) on the solution complex of Klein–Gordon and linear Yang–Mills theory on globally hyperbolic Lorentzian manifolds admits retarded/advanced trivializations (analogs of retarded/advanced Green’s operators). Quantization of the associated unshifted Poisson structure determines a unique (up to equivalence) homotopy algebraic quantum field theory (AQFT), i.e. a functor that assigns differential graded ∗ -algebras of observables and fulfills homotopical analogs of the AQFT axioms. For Klein–Gordon theory the construction is equivalent to the standard one, while for linear Yang–Mills it is richer and reproduces the BRST/BV field content (gauge fields, ghosts and antifields).I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.