The pyrazole nucleus has long been known as a privileged scaffold in the synthesis of biologically active compounds. Within the numerous pyrazole derivatives developed as potential drugs, this review is focused on molecules characterized by a urea function directly linked to the pyrazole nucleus in a different position. In the last 20 years, the interest of numerous researchers has been especially attracted by pyrazolyl-ureas showing a wide spectrum of biological activities, ranging from the antipathogenic activities (bacteria, plasmodium, toxoplasma, and others) to the anticarcinogenic activities. In particular, in the anticancer field, pyrazolyl-ureas have been shown to interact at the intracellular level on many pathways, in particular on different kinases such as Src, p38-MAPK, TrKa, and others. In addition, some of them evidenced an antiangiogenic potential that deserves to be explored. This review therefore summarizes all these biological data (from 2000 to date), including patented compounds.

Pyrazolyl-Ureas as Interesting Scaffold in Medicinal Chemistry

Brullo Chiara;Bruno Olga;Federica Rapetti
2020-01-01

Abstract

The pyrazole nucleus has long been known as a privileged scaffold in the synthesis of biologically active compounds. Within the numerous pyrazole derivatives developed as potential drugs, this review is focused on molecules characterized by a urea function directly linked to the pyrazole nucleus in a different position. In the last 20 years, the interest of numerous researchers has been especially attracted by pyrazolyl-ureas showing a wide spectrum of biological activities, ranging from the antipathogenic activities (bacteria, plasmodium, toxoplasma, and others) to the anticarcinogenic activities. In particular, in the anticancer field, pyrazolyl-ureas have been shown to interact at the intracellular level on many pathways, in particular on different kinases such as Src, p38-MAPK, TrKa, and others. In addition, some of them evidenced an antiangiogenic potential that deserves to be explored. This review therefore summarizes all these biological data (from 2000 to date), including patented compounds.
File in questo prodotto:
File Dimensione Formato  
68.pdf

accesso aperto

Tipologia: Documento in versione editoriale
Dimensione 1.1 MB
Formato Adobe PDF
1.1 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1021190
Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 20
social impact