Optical technologies allowing modulation of neuronal activity at high spatio-temporal resolution are becoming paramount in neuroscience. In this respect, azobenzene-based photoswitches are promising nanoscale tools for neuronal photostimulation. Here we engineered a light-sensitive azobenzene compound (Ziapin2) that stably partitions into the plasma membrane and causes its thinning through trans-dimerization in the dark, resulting in an increased membrane capacitance at steady state. We demonstrated that in neurons loaded with the compound, millisecond pulses of visible light induce a transient hyperpolarization followed by a delayed depolarization that triggers action potential firing. These effects are persistent and can be evoked in vivo up to 7 days, proving the potential of Ziapin2 for the modulation of membrane capacitance in the millisecond timescale, without directly affecting ion channels or local temperature.

Neuronal firing modulation by a membrane-targeted photoswitch

Baldelli P;Grasselli G;Shmal D;Benfenati F.
2020-01-01

Abstract

Optical technologies allowing modulation of neuronal activity at high spatio-temporal resolution are becoming paramount in neuroscience. In this respect, azobenzene-based photoswitches are promising nanoscale tools for neuronal photostimulation. Here we engineered a light-sensitive azobenzene compound (Ziapin2) that stably partitions into the plasma membrane and causes its thinning through trans-dimerization in the dark, resulting in an increased membrane capacitance at steady state. We demonstrated that in neurons loaded with the compound, millisecond pulses of visible light induce a transient hyperpolarization followed by a delayed depolarization that triggers action potential firing. These effects are persistent and can be evoked in vivo up to 7 days, proving the potential of Ziapin2 for the modulation of membrane capacitance in the millisecond timescale, without directly affecting ion channels or local temperature.
File in questo prodotto:
File Dimensione Formato  
20-DiFrancesco et al, 2020 Nat Nanotech - Ziapin.pdf

accesso chiuso

Descrizione: Article
Tipologia: Documento in versione editoriale
Dimensione 5.85 MB
Formato Adobe PDF
5.85 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
20-DiFrancesco et al, 2020 Nat Nanotech - SI light.pdf

accesso chiuso

Descrizione: Supplementary Information
Tipologia: Documento in versione editoriale
Dimensione 4.18 MB
Formato Adobe PDF
4.18 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1020394
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 85
  • ???jsp.display-item.citation.isi??? 82
social impact