Optical technologies allowing modulation of neuronal activity at high spatio-temporal resolution are becoming paramount in neuroscience. In this respect, azobenzene-based photoswitches are promising nanoscale tools for neuronal photostimulation. Here we engineered a light-sensitive azobenzene compound (Ziapin2) that stably partitions into the plasma membrane and causes its thinning through trans-dimerization in the dark, resulting in an increased membrane capacitance at steady state. We demonstrated that in neurons loaded with the compound, millisecond pulses of visible light induce a transient hyperpolarization followed by a delayed depolarization that triggers action potential firing. These effects are persistent and can be evoked in vivo up to 7 days, proving the potential of Ziapin2 for the modulation of membrane capacitance in the millisecond timescale, without directly affecting ion channels or local temperature.
Neuronal firing modulation by a membrane-targeted photoswitch
Baldelli P;Grasselli G;Shmal D;Benfenati F.
2020-01-01
Abstract
Optical technologies allowing modulation of neuronal activity at high spatio-temporal resolution are becoming paramount in neuroscience. In this respect, azobenzene-based photoswitches are promising nanoscale tools for neuronal photostimulation. Here we engineered a light-sensitive azobenzene compound (Ziapin2) that stably partitions into the plasma membrane and causes its thinning through trans-dimerization in the dark, resulting in an increased membrane capacitance at steady state. We demonstrated that in neurons loaded with the compound, millisecond pulses of visible light induce a transient hyperpolarization followed by a delayed depolarization that triggers action potential firing. These effects are persistent and can be evoked in vivo up to 7 days, proving the potential of Ziapin2 for the modulation of membrane capacitance in the millisecond timescale, without directly affecting ion channels or local temperature.File | Dimensione | Formato | |
---|---|---|---|
20-DiFrancesco et al, 2020 Nat Nanotech - Ziapin.pdf
accesso chiuso
Descrizione: Article
Tipologia:
Documento in versione editoriale
Dimensione
5.85 MB
Formato
Adobe PDF
|
5.85 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
20-DiFrancesco et al, 2020 Nat Nanotech - SI light.pdf
accesso chiuso
Descrizione: Supplementary Information
Tipologia:
Documento in versione editoriale
Dimensione
4.18 MB
Formato
Adobe PDF
|
4.18 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.