To support the interpretation of the experimental results obtained from two laboratory-scale reactors, one working in the steam methane reforming (SMR) mode, and the other in the CO2 hydrogenation (MCO2) mode, a steady-state pseudo-homogeneous 1D non-isothermal packed-bed reactor model is developed, embedding the classical Xu and Froment local kinetics. The laboratory reactors are operated with three different catalysts, two commercial and one homemade. The simulation model makes it possible to identify and account for thermal effects occurring inside the catalytic zone of the reactor and along the exit line. The model is intended to guide the development of small size SMR and MCO2 reactors in the context of Power-to-X (P2X) studies.
Modeling of laboratory steam methane reforming and CO2 methanation reactors
Costamagna P.;Pugliese F.;Cavattoni T.;Busca G.;Garbarino G.
2020-01-01
Abstract
To support the interpretation of the experimental results obtained from two laboratory-scale reactors, one working in the steam methane reforming (SMR) mode, and the other in the CO2 hydrogenation (MCO2) mode, a steady-state pseudo-homogeneous 1D non-isothermal packed-bed reactor model is developed, embedding the classical Xu and Froment local kinetics. The laboratory reactors are operated with three different catalysts, two commercial and one homemade. The simulation model makes it possible to identify and account for thermal effects occurring inside the catalytic zone of the reactor and along the exit line. The model is intended to guide the development of small size SMR and MCO2 reactors in the context of Power-to-X (P2X) studies.File | Dimensione | Formato | |
---|---|---|---|
energies-13-02624.pdf
accesso aperto
Descrizione: Articolo su rivista
Tipologia:
Documento in versione editoriale
Dimensione
3.69 MB
Formato
Adobe PDF
|
3.69 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.