Tropical cyclones impose stresses on narrow and shallow continental shelves. The interaction of strong wind- and wave-induced currents with the local topography near the shore gives rise to complex flow and sediment transport patterns. Considerable uncertainty remains on the initiation mechanisms of turbidity currents, particularly in coastal oceanic settings subject to extreme weather events. Here we use state-of-the-art numerical models to investigate the implications of tropical cyclone-induced coastal circulation patterns for the generation of turbidity currents. In our simulations tropical cyclones induce megarip currents associated with shoreline curvature and rotation of incoming wave directions. These currents flush water and sediment towards submarine canyons, ultimately triggering turbidity currents into deep waters. Evidence of sediment-laden underflows, which resulted in subsea pipeline displacements, supports our hypothesis that tropical cyclone-induced megarip currents can trigger turbidity currents offshore from tropical river deltas.
Typhoon-induced megarips as triggers of turbidity currents offshore tropical river deltas
Porcile, Gaetano;Bolla Pittaluga, Michele;
2020-01-01
Abstract
Tropical cyclones impose stresses on narrow and shallow continental shelves. The interaction of strong wind- and wave-induced currents with the local topography near the shore gives rise to complex flow and sediment transport patterns. Considerable uncertainty remains on the initiation mechanisms of turbidity currents, particularly in coastal oceanic settings subject to extreme weather events. Here we use state-of-the-art numerical models to investigate the implications of tropical cyclone-induced coastal circulation patterns for the generation of turbidity currents. In our simulations tropical cyclones induce megarip currents associated with shoreline curvature and rotation of incoming wave directions. These currents flush water and sediment towards submarine canyons, ultimately triggering turbidity currents into deep waters. Evidence of sediment-laden underflows, which resulted in subsea pipeline displacements, supports our hypothesis that tropical cyclone-induced megarip currents can trigger turbidity currents offshore from tropical river deltas.File | Dimensione | Formato | |
---|---|---|---|
s43247-020-0002-1.pdf
accesso aperto
Descrizione: Articolo su rivista
Tipologia:
Documento in versione editoriale
Dimensione
3.9 MB
Formato
Adobe PDF
|
3.9 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.