Genome–wide association studies (GWAS) have revealed a plethora of putative susceptibility genes for Alzheimer’s disease (AD), with the sole exception of APOE gene unequivocally validated in independent study. Considering that the etiology of complex diseases like AD could depend on functional multiple genes interaction network, here we proposed an alternative GWAS analysis strategy based on (i) multivariate methods and on a (ii) telescope approach, in order to guarantee the identification of correlated variables, and reveal their connections at three biological connected levels. Specifically as multivariate methods, we employed two machine learning algorithms and a genetic association test and we considered SNPs, Genes and Pathways features in the analysis of two public GWAS dataset (ADNI-1 and ADNI-2). For each dataset and for each feature we addressed two binary classifications tasks: cases vs. controls and the low vs. high risk of developing AD considering the allelic status of APOEe4. This complex strategy allowed the identification of SNPs, genes and pathways lists statistically robust and meaningful from the biological viewpoint. Among the results, we confirm the involvement of TOMM40 gene in AD and we propose GRM7 as a novel gene significantly associated with AD.

A telescope GWAS analysis strategy, based on SNPs-genes-pathways ensamble and on multivariate algorithms, to characterize late onset Alzheimer’s disease

Squillario, Margherita;Tomasi, Federico;Tozzo, Veronica;Barla, Annalisa;
2020

Abstract

Genome–wide association studies (GWAS) have revealed a plethora of putative susceptibility genes for Alzheimer’s disease (AD), with the sole exception of APOE gene unequivocally validated in independent study. Considering that the etiology of complex diseases like AD could depend on functional multiple genes interaction network, here we proposed an alternative GWAS analysis strategy based on (i) multivariate methods and on a (ii) telescope approach, in order to guarantee the identification of correlated variables, and reveal their connections at three biological connected levels. Specifically as multivariate methods, we employed two machine learning algorithms and a genetic association test and we considered SNPs, Genes and Pathways features in the analysis of two public GWAS dataset (ADNI-1 and ADNI-2). For each dataset and for each feature we addressed two binary classifications tasks: cases vs. controls and the low vs. high risk of developing AD considering the allelic status of APOEe4. This complex strategy allowed the identification of SNPs, genes and pathways lists statistically robust and meaningful from the biological viewpoint. Among the results, we confirm the involvement of TOMM40 gene in AD and we propose GRM7 as a novel gene significantly associated with AD.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1018916
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact