The preliminary design of a biologically inspired flapping UAV is presented. Starting from a set of initial design specifications, namely: weight, maximum flapping frequency and minimum hand-launch velocity of the model, a parametric numerical study of the proposed avian model is conducted in terms of the aerodynamic performance and longitudinal static stability in gliding and flapping conditions. The model shape, size and flight conditions are chosen to approximate those of a gull. The wing kinematics is selected after conducting an extensive parametric study, starting from the simplest flapping pattern and progressively adding more degrees of freedom and control parameters until reaching a functional and realistic wing kinematics. The results give us an initial insight of the aerodynamic performance and longitudinal static stability of a biomimetic flapping UAV, designed at minimum flight velocity and maximum flapping frequency.

Preliminary design of a small-sized flapping UAV: I. Aerodynamic performance and static longitudinal stability

Pralits, J. O.;Negrello, F.;Silvestri, P.;Lucifredi, A.;Bottaro A.;Joel Guerrero
2015-01-01

Abstract

The preliminary design of a biologically inspired flapping UAV is presented. Starting from a set of initial design specifications, namely: weight, maximum flapping frequency and minimum hand-launch velocity of the model, a parametric numerical study of the proposed avian model is conducted in terms of the aerodynamic performance and longitudinal static stability in gliding and flapping conditions. The model shape, size and flight conditions are chosen to approximate those of a gull. The wing kinematics is selected after conducting an extensive parametric study, starting from the simplest flapping pattern and progressively adding more degrees of freedom and control parameters until reaching a functional and realistic wing kinematics. The results give us an initial insight of the aerodynamic performance and longitudinal static stability of a biomimetic flapping UAV, designed at minimum flight velocity and maximum flapping frequency.
File in questo prodotto:
File Dimensione Formato  
2016_1_meccanica1.pdf

accesso chiuso

Tipologia: Documento in versione editoriale
Dimensione 2.95 MB
Formato Adobe PDF
2.95 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1018201
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 11
social impact