Composite rheological materials based on ferroelectric porous structure and either magnetic elastomer or fluid filler were investigated. Ferroelectric porous structure was prepared using silicone matrix and ferroelectric PZT microparticles. Different types of liquid magnetic mixtures were placed into the porous foam like in a sponge. The influence of external electric field on the magnetic properties of such composites was detected by vibrating sample magnetometer with added voltage source. Coefficient of inverse magnetoelectric transformations of the sample with elastic filler was found to depend on magnetic field. It maximum value for the sample with iron microparticles was found to be ∼36 µG cm/V. Comparing the properties of the ferroelectric foam with ferrofluid and magnetic elastomer, we propose a qualitative model of magnetoelectric effect associated with deformation effects in components and with magnetization mechanism.
Magnetorheological foams for multiferroic applications
Peddis D.;
2019-01-01
Abstract
Composite rheological materials based on ferroelectric porous structure and either magnetic elastomer or fluid filler were investigated. Ferroelectric porous structure was prepared using silicone matrix and ferroelectric PZT microparticles. Different types of liquid magnetic mixtures were placed into the porous foam like in a sponge. The influence of external electric field on the magnetic properties of such composites was detected by vibrating sample magnetometer with added voltage source. Coefficient of inverse magnetoelectric transformations of the sample with elastic filler was found to depend on magnetic field. It maximum value for the sample with iron microparticles was found to be ∼36 µG cm/V. Comparing the properties of the ferroelectric foam with ferrofluid and magnetic elastomer, we propose a qualitative model of magnetoelectric effect associated with deformation effects in components and with magnetization mechanism.File | Dimensione | Formato | |
---|---|---|---|
Makarova et al. - 2019 - Magnetorheological foams for multiferroic applications.pdf
accesso chiuso
Tipologia:
Documento in versione editoriale
Dimensione
3.76 MB
Formato
Adobe PDF
|
3.76 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.