Nanostructured α-Mn3O4 (haussmannite) thin films consisting of evenly interconnected nanoaggregates were prepared on Si(100) substrates by chemical vapor deposition from a Mn(II) diketonate-diamine precursor under different reaction atmospheres (dry vs wet O2) and total operating pressures. The combination of chemico-physical results obtained by the joint use of complementary techniques enabled us to demonstrate the obtainment of high-purity Mn3O4 materials free from other manganese oxide phases, characterized by controllable structural and morphological characteristics as a function of the adopted processing conditions. Magnetic properties were investigated by analyzing temperature dependence (i.e., field-cooled and zero-field-cooled measurements) and field-dependence of the magnetization behavior. The obtained films show bulk-like magnetic properties, together with extraordinarily high low-temperature in-plane coercivities (up to ∼1 T). The possibility to tailor these values by varying the content of microstructural defects may foster the implementation of the obtained films in eventual technological applications. ©

High Magnetic Coercivity in Nanostructured Mn3O4 Thin Films Obtained by Chemical Vapor Deposition

Peddis D.;
2019-01-01

Abstract

Nanostructured α-Mn3O4 (haussmannite) thin films consisting of evenly interconnected nanoaggregates were prepared on Si(100) substrates by chemical vapor deposition from a Mn(II) diketonate-diamine precursor under different reaction atmospheres (dry vs wet O2) and total operating pressures. The combination of chemico-physical results obtained by the joint use of complementary techniques enabled us to demonstrate the obtainment of high-purity Mn3O4 materials free from other manganese oxide phases, characterized by controllable structural and morphological characteristics as a function of the adopted processing conditions. Magnetic properties were investigated by analyzing temperature dependence (i.e., field-cooled and zero-field-cooled measurements) and field-dependence of the magnetization behavior. The obtained films show bulk-like magnetic properties, together with extraordinarily high low-temperature in-plane coercivities (up to ∼1 T). The possibility to tailor these values by varying the content of microstructural defects may foster the implementation of the obtained films in eventual technological applications. ©
File in questo prodotto:
File Dimensione Formato  
Bigiani et al. - 2019 - High Magnetic Coercivity in Nanostructured Mn3O4 Thin Films Obtained by Chemical Vapor Deposition.pdf

accesso chiuso

Tipologia: Documento in versione editoriale
Dimensione 3.78 MB
Formato Adobe PDF
3.78 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1017631
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 9
social impact